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By following the steps in this document, you should reach a point where you have an F1/10 car 
that can drive itself around a hallway by wall-following.  
 

 

What you need to start 

Miscellaneous 
● (1) Laptop with Ubuntu Xenial 16.04.01 LTS installed. (Other versions of Ubuntu may 

work as well, but we can’t guarantee this.) 

The hardware kit 

Mechanical 
● (1) Traxxas RC rally car (recommended model: Ford Fiesta ST) 

○ Note: as of August 2018, this car is sold with a brushed motor by Traxxas. See 
link below for brushless motor. 

● (1) Velineon 3351R/3500 brushless DC motor 
(​https://www.amazon.com/Traxxas-Velineon-Brushless-Motor-3500Kv/dp/B00XWTXOC
C/ref=sr_1_5?s=toys-and-games&ie=UTF8&qid=1533078584&sr=1-5&keywords=3351r
&dpID=412p2cEdtOL&preST=_SX342_QL70_&dpSrc=srch) 

● (1) laser-cut chassis on which you will mount everything 
● (1) LIDAR mount with (2) C-shaped brackets 
● (2) threaded 14mm M3 standoffs 
● (4) 19mm M3 standoffs 
● (8) 35mm M3 standoffs 
● (4) 45mm M3 standoffs 
● (35) 10mm M3 screws 
● (4) 20mm M3 screws 
● (4) 8mm round nylon spacers 
● (1) Roll of double-sided tape (for mounting USB hubs and optionally FOCbox) 

Electrical 
● (1) power board (obtained from University of Pennsylvania team. This was designed at 

Penn, printed by ​www.4pcb.com​) 
● (1) Nvidia Jetson TX1 or TX2 with Wi-Fi antennas (included with the development board) 
● (1) Orbitty carrier board (for Jetson) 
● (1) Hokuyo 10LX or 30LX LIDAR 

http://www.4pcb.com/


 

● (1) Traxxas LiPo or NiMH battery (at least 9V) 
● (1) FOCbox or VESC 4.12 electronic speed controller 
● (1) USB hub (at least 6 ports) 
● (1) short (~1 ft) USB micro cable 
● (2) spools/strips of 22 AWG wire of different colors (preferably red and black) 
● (1) USB keyboard and mouse 
● (1) HDMI display 
● Optional: (1) HDMI dummy plug and (1) USB Wi-Fi adapter for connecting to the car via 

VNC 

Tools 
● (1) Metric ruler 
● (1) Needle-nose pliers 
● (1) Wire strippers 
● (1) 2mm width or smaller flathead screwdriver 
● (1) 5/64 inch diameter hex driver key or small Phillips screwdriver 
● (1) Hex socket driver or wrench (to hold standoffs in place) 
● (1) T3 Torx screwdriver 

 
Most of these parts are shown in the image below. Make sure you have all of them before you 
begin. 
 



 

 
 

 

Preparing and Assembling the Car 

Preparing the Car 
TODO: will fill out when the fourth Traxxas car arrives 

Obtaining the Power Board 
[1. Instructions on getting the power board from Penn,  
2. and a link to files that you would send to a PCB company like 4PCB or PCBWay. Currently on 
github ​https://github.com/mlab-upenn/f1tenth-dev/tree/master/power-board-v2.0​ ] 
 

https://github.com/mlab-upenn/f1tenth-dev/tree/master/power-board-v2.0


 

A note on why we have a power board:​ The power board is used to provide a stable voltage source for the 
car and its peripherals since the battery voltage drops as the battery runs out. The board does not do any 
charging of the battery, so you will need a Traxxas EZ-Peak charger to charge it (you can find them on 
Traxxas' website). At present, there's no way to know the battery's charge level except by measuring it 
with a multimeter or the BLDC Tool as it runs, but we could think about adding a low voltage LED or 
seven-segment LCD display (to show the voltage) to the next iteration of the board. The LIPO protection 
module and green connectors are currently unused and are a legacy from previous F1/10 car iterations 
which used the Teensy microcontroller as a motor driver. 

Installing the Body Standoffs 
Begin by installing four 45mm M3 standoffs into the holes of the main car body pictured 
below. Secure the standoffs to the bottom of the car using 10mm M3 screws, and use 
either nosepliers or a hex driver to hold the standoff in place while you turn the screw on 
the other side. Pay attention to where you install the standoffs since there are several 
mounting holes on the car's base. See the picture below for clarification. 
 
Next, install two threaded 14mm M3 standoffs into the front holes in the car base, using 
the pliers or hex driver to thread the standoffs into the holes. Don't mount the chassis to 
the car yet since we still need to mount the Jetson and power board to the chassis. 
 

   
 
 



 

  
 

Mounting the FOCbox to the Chassis 
Feed the three motor wires for the FOCbox through the rectangular slot in the chassis as shown 
below. 
 

 
 



 

Locate the three mounting holes on the chassis and the corresponding three holes on the 
FOCbox itself (shown below). Use 10mm M3 screws to secure the FOCbox to the chassis. 

  
Alternate method of securing the FOCbox if screws don’t fit​: Some FOCboxes (the more 
recently-made ones) have smaller screw holes that won’t fit M3-size screws. If this is the case 
for your FOCbox, you can use a few pieces of double-sided tape to secure the FOCbox instead.  

Installing the Chassis Standoffs 
Mount eight 35mm M3 standoffs to the ​glossy side​ of the black laser-cut chassis in the 
positions shown below. Thread 10mm M3 screws through the drill holes and screw 
them into the standoffs to secure them. (​Important​: If you do not mount the standoffs to 
the glossy side, the power board won't fit since the screw holes will be misaligned.) 
 
Note there are several drill holes in the chassis, so make sure you’re using the right 
ones. In the image below, the 4 screws on the left(which is the back of the car) will 
eventually hold the power board, so that’s a good way to see if they’re properly placed. 
The 4 screws on the right (2 on each side of the oval cutout) will eventually hold the 
Orbitty carrier attached to the Jetson. 



 

 
Mount two more (19mm M3) standoffs to the front part of the chassis for the LIDAR, and 
secure with 10mm screws. The top part of the chassis should look like the picture 
below. 
 

 



 

Detaching the Jetson from the Development Board 
When you purchase a Jetson, it is attached to a development board. In order to use it 
on the car, you will need to unscrew the Jetson and its Wi-Fi antenna from the 
development board.  
 
Before you remove the antenna, you will need to remove the bottom plate from the 
development board. Remove the four screws marked below and lift the development 
board away from the plate. 
 

 
 
Next, remove the Wi-Fi antenna by unscrewing the two screws marked below. Keep the 
screws in a safe place, as you’ll use them in a bit to attach the antennas to standoffs. 
 



 

 
 
Remove the two brass-colored nuts holding the antennas to the L-shaped bracket, and 
then remove the two antennas from the bracket. It helps to use two pairs of pliers: one 
to hold the rear nuts in place and another to unscrew the nuts on the end with the 
antenna connectors. 
 

 
 



 

Using a Phillips screwdriver, thread the two screws you saved earlier completely into 
the bracket as pictured below. Attach two standoffs to the opposite ends of the screws 
and hand-tighten them until they won’t turn anymore. Use the pliers to tighten the 
standoffs more while you hold the head of the screw in place using the screwdriver. 
Once you’ve done these steps, place the antennas and washers back into the bracket, 
and tighten the brass nuts onto the threaded connectors again. 
 

   
 
Unplug the Jetson’s fan and remove the Jetson from the development board by using a 
T3 Torx screwdriver to unscrew the Jetson (the large silver heat sink), and then pull up 
gently to detach it from the development board. Keep the Jetson in a safe place while 
you attach the antennas to the power board. 
 

  



 

Mounting the Wi-Fi Antennas to the Power Board 
Attach the two standoffs for the Wi-Fi antenna bracket to the power board, making sure 
the antennas, when installed and extended, lie ​over ​the board and now away from it. 
Install the two black antennas onto the threaded connectors if they aren’t already on. 

  

Attach the two wires for the Jetson Wi-Fi antenna to the two gold-colored connectors 
near the fan connector on the heat sink (the order of the wires doesn’t matter). This can 
be a little tricky, so you might want to use a flathead screwdriver to ensure the 
connections are tight. ​Don’t press too hard​, however as you can easily damage the 
connectors if you use excessive force! 



 

  

 

Mounting the Power Board to the Chassis 
Screw the power board onto its chassis standoffs using 10mm M3 screws. The screw 
positions are indicated with arrows below. 

  



 

Attaching the Orbitty to the Jetson 
Attach the Orbitty to the Jetson by connecting the two long black ports and connect the Jetson’s 
fan to the Orbitty’s fan connector as shown in the pictures below.. 
 

  

Connecting the Jetson and Power Board 

Cut two 8-inch pieces of wire of different colors (preferably red and black), and strip 
both ends to a short length (1/8 inch). Locate the green terminal block on the Jetson 
and attach one end of one wire to the ​+Vin​ terminal, and the other end to one of the 
green ​12V​ terminals on the power board. (Any of the 12 volt terminals are acceptable. To 
attach, insert the stripped end into the terminal and screw the little screw tight with a 
small flathead screwdriver.)  Attach the other stripped wire to the ​GND​ terminal on the 
Jetson and to the ​GND​ terminal on the corresponding terminal block on the power board. 



 

   

Mounting the Jetson to the Chassis 

Your kit comes with four white plastic standoffs; place these between the Jetson PCB 
and heatsink (see picture) ​before ​threading the screws through. Otherwise, you risk 
bending the Orbitty while screwing it in. Use 20mm screws to secure the Jetson to its 
chassis standoffs. 

   
Ensure that when you mount the Jetson that the wires for neither the Wi-Fi antenna nor 
the Jetson's power connections get pinched. It might help to tuck both sets of wires 
underneath the power board. (Don't tuck them underneath the Jetson because they 
might restrict airflow or obstruct the fan's blades.)  Your configuration should now look 
something like this: 
 



 

 
 

You might be tempted at this point to mount the LIDAR; don’t do it yet. We will do this 
after mounting the chassis to the car. (The LIDAR is very expensive, and we don't want 
to risk it getting damaged when mounting the chassis.) 

Mounting the Chassis to the Car Underbody 
Place the chassis onto the five standoffs on the car base and align the chassis’ drill 
holes with the car’s base standoffs you attached earlier as shown below. Use six 10mm 
M3 screws to secure the chassis to the standoffs. 
 



 

 

Mounting the LIDAR 
The LIDAR should have two cords: one for power and another for either Ethernet or 
USB. Cut the end of the power cord, leaving 1-2 feet of cable. Strip the end, cut away all 
wires except for the blue and brown ones, and strip those two wires to 1/8 inch as 
shown below. 

 
 
Attach the LIDAR to the tree-shaped base using two (10LX) or four (30LX) screws, such 
that the wires protruding from the LIDAR go towards the back of the car. (For the 30LX, 
the two LEDs at the top of the LIDAR should face the front of the car.)  Then mount the 
C-shaped brackets to the black tree-shaped base as shown in the pictures below. ​Note: 
if the black mount does not fit in the holes of the C brackets, sand the inserts until they 
do. 
 



 

   
 
Mount the LIDAR to the car by fitting the two thick protruding parts of the mounting 
brackets into the holes. The open part of the "C" in the brackets should face forward as 
shown below. 
 

 
 
 
If you completed the previous steps correctly, two of the holes on the narrow end of the 
LIDAR base should match up with the two 19mm standoffs you mounted earlier. Wind 
the power and USB cords of the LIDAR around its base so that there is just enough 
available to plug into the power board and Jetson, with a little bit of slack so that it is not 
too tight. Tuck both cords under the LIDAR mounting plate between the two silver 



 

standoffs, and secure the LIDAR base to the standoffs on the chassis using two 10mm 
M3 screws. 

  

Mounting the USB Hub(s) 
Attack two pieces of double-sided tape to a USB hub. Place the hub onto the empty space of 
the chassis directly below the Jetson and to the right of the power board as shown. If your hub 
has power buttons, make sure all of them are turned on. 
 

  
If you need more USB ports (required if your LiDAR uses USB), you can stack a second hub 
onto the top of the first. Again, use double-sided tape to secure the second hub and make sure 
all power buttons are on. 
 



 

  
 

Plug the first USB hub into the Orbitty board. If you’re using a second hub, use the white micro 
USB adapter that comes with the Jetson to plug in the second hub. 

 

 



 

Connecting the LIDAR 
Attach the LIDAR's power cable to a free 12V terminal block on the power board. ​The 
brown wire should go to the ​12V ​terminal, and the blue wire should go to the 
corresponding ​GND​ terminal​. The side of the LIDAR has a pinout as well if you forget. 
 

 
 
If the LIDAR has an Ethernet cable, attach it to the Ethernet port on the Jetson. If it has 
a USB cable, plug it into the USB hub. Route any excess cables behind the USB hubs 
as shown. 
 

  



 

Connecting the FOCbox 
Pass the 3 round FOCbox wires through the rectangular slot in the plastic chassis, then connect 
the 3 circular bullet connectors to the three motor wires. (The order in which you connect the 
wires kinda doesn’t matter (electrically speaking). If you run the car and it goes backwards when 
it should go forwards, you can swap any two of the three wires.)  Connect the 3-wire servo 
ribbon cable as well, making sure the colors match up. 
 

  
 
If your micro USB cable is thin enough, thread it through the rectangular wire slot and around 
the FOCbox to the USB connector as shown below, or route it around the rear end of the 
chassis if it isn’t. Plug the cable into the FOCbox’s USB connector and into a free port on your 
USB hub. Tie the USB cable up using a cable tie, and tuck all of the wires underneath the 
chassis. You can also use this time to plug in the LIDAR (if it is USB), the external Wi-FI 
adapter, and the receiver for the F710 gamepad. 
 



 

  

Connecting the Car to the Battery 
Connect the battery to the FOCbox using the battery connector. ​Make sure that red is aligned 
with red and black is aligned with black - otherwise things will get hot and dicey. ​Then connect 
the FOCbox to the power board using the white port shown in the picture below. 
 

 
 
At this point, your car should be assembled, the Jetson lights should flash when you flip 
the power switch, and the car is ready to run!  



 

Note: At present, there's no way to know the battery's charge level except by measuring 
it with a multimeter as it runs. You might consider adding a low voltage LED or 
seven-segment LCD display (to show the voltage).  

Tuning the FOCbox’s PID Gains 
In this section we use the words FOCbox and VESC interchangeably. 
 
Important Safety Tips  

● Make sure you hold on to the car while testing the motor to prevent it from flying off the 
stand.  

● Make sure there are no objects (or people) in the vicinity of the wheels while testing. 
● It’s a good idea to use a fully-charged LiPO battery instead of a power supply to ensure 

the motor has enough current to spin up. 
 

1. Put your car on an elevated stand so that its wheels can turn without it going anywhere. 
If you don’t have an RC car stand, you can use the box that came with your Jetson. 

2. Connect the host laptop to the FOCbox using a USB cable. 
3. Download bldc tool from JetsonHacks (​https://github.com/jetsonhacks/installBLDC​), 

following his instructions for installation. 
4. Open BLDC Tool and click the “Connect” button at the top right of the window to connect 

to the VESC. 
a. If you get the error “Device not found”, try running the command ​lsusb ​ in a 

terminal. You should see an entry for “STMicroelectronics STMF407” or 
something similar. If you don’t, try unplugging and plugging in the USB cable on 
both ends. If the problem doesn’t go away, try rebooting the Jetson. 

 

https://github.com/jetsonhacks/installBLDC


 

 
 

b. If you are using a VESC 4.12 (including a FOCbox), ensure the firmware version 
is 2.18. 

 

 
 



 

5. Disable keyboard control by clicking the “KB Ctrl” button at the lower right. This will 
prevent your keyboard’s arrow keys from controlling the motor and is important to 
prevent damage to the car from it moving unexpectedly. 

 

 
 

6. Start plotting the realtime RPM data by clicking the “Realtime Data” tab, and checking 
the “Activate sampling” checkbox at the bottom left of the window. Click the “RPM” tab 
above the graph.  

a. We will keep referring to this plot of the motor’s RPM as we tune the PID gains. 
Out goal is to get the motor to spin up as quickly as possible when we set it to a 
certain RPM. We also don’t want the motor to cog (not spin) or overshoot the 
target speed if possible. 

 



 

 
 

7. Test the motor first (without PID speed control) by setting the “Duty Cycle” to 0.20. This 
will spin the motor up to approximately 16,000 - 17,000 RPM. Let this run for a few 
seconds, and then press the “Release Motor” button at the bottom right to stop it. 

a. Observe the RPM graph. If the motor is spinning backwards (the RPM is 
negative), try reversing two of the connections from the VESC to the motor. (It 
doesn’t matter which wires you reverse.) 

b. If the wheels don’t spin and the motor makes no noise, check to make sure all 
connections to the motor are tight. 

c. If the wheels don’t spin and the motor does, ensure the motor’s gear is attached 
correctly to the gearbox at the back of the car. Spin both front wheels with your 
hand to verify that the gear is making good contact. You should feel some 
resistance when turning the wheels. 

d. If the motor doesn’t spin and makes a humming or hissing sound, you might need 
to replace the motor. If this doesn’t work, try replacing the VESC. 

 



 

 
 

8. Click the “Motor Configuration” tab at the top and the “Advanced” tab on the left. Set Ki 
and Kd to 0.00000, and set Kp to 0.00001. Click the “Write Configuration” button at the 
bottom, go back to the data plotting tab and run the car at 3000 RPM. 

a. You will notice that the car won’t even make it close, as it only goes up to around 
1200 RPM. (High steady-state error.) 

b. Try turning Kp up to 0.00002, 0.00004, and 0.00008. (Don’t forget to write the 
configuration each time.) The motor will start to cog out at higher Kp values. 

 



 

 
 

9. Set Kp back to 0.00002, and set Ki to 0.00002, and run the car at 3000 RPM again. 
Notice how the car slowly reaches the 3000 RPM target. (This is because adding Ki 
helps to eliminate steady-state error.) 

a. Keep increasing Ki; set it to 0.00005 and then double that value a few times until 
the car is able to reach 3000 RPM without overshooting or cogging out. 

10. Now, try increasing the speed to 6000 RPM. 
a. The motor might cog out and overshoot. If it does, try halving Kp. 

11. Increase the speed to 10,000 RPM and then 20,000 RPM. ​Make sure you hold the car! 
a. If the motor cogs out and overshoots, halve Kp until it doesn’t. 
b. It may also help to halve Ki if halving Kp doesn’t work. 
c. If done correctly, the motor should not overshoot to more than 2 times the set 

RPM. (That is, if the RPM is set to 15,000, its peak value should not exceed 
30,000.) 

LiPo (Lithium Polymer) Battery Safety 
LiPO batteries allow your car to run for a long time, but they are not something to play with or 
joke about. They store a large amount of energy in a small space and can damage your car and 
cause a fire if used improperly. With this in mind, here are some safety tips for using them with 
the car. 

● When charging batteries, always monitor them and place them in a fireproof bag on a 
non-flammable surface clear of any other objects. 



 

● Do not leave a LIPO battery connected to the car when you’re not using it. The battery 
will discharge and its voltage will drop to a level too low to charge it safely again. 

● Unplug the battery from the car immediately if you notice any popping sounds, bloating 
of the battery, burning smell, or smoke. 

● Never short the battery leads. 
● Do not plug the battery in backwards. This will damage the VESC and power board (and 

likely the Jetson as well) and could cause a short circuit. 
 
See ​this video​ and ​this video​ for examples of what might happen if you don’t take care of your 
batteries. Be safe and don’t let these happen to you! 

 

Basic software install 

On your Laptop  

Supported versions 
You will need to install the OS Ubuntu Xenial 16.04.01 and ROS Kinetic. 
Could other combinations work? Sure.  
Will we support them? Nope. 
 

Install ROS 
Go to ROS.org and follow the instructions there to install the version of ROS referenced above.  
 
Note: you might get the following error message when you execute 
 >> sudo apt-get install ros-kinetic-desktop-full 

Building dependency tree  

Reading state information... Done 

Some packages could not be installed. This may mean that you have 

requested an impossible situation or if you are using the unstable 

distribution that some required packages have not yet been created 

or been moved out of Incoming. 

The following information may help to resolve the situation: 

 

The following packages have unmet dependencies: 

ros-kinetic-desktop-full : Depends: ros-kinetic-desktop but it is not  

going to be installed 

 

E: Unable to correct problems, you have held broken packages. 

 
You will find many suggestions online. This one worked for us (I'm installing on a Virtual Machine hosted by a Mac OS): 

https://www.youtube.com/watch?v=gz3hCqjk4yc
https://www.youtube.com/watch?v=0nrsoMsEMNU


 

https://askubuntu.com/questions/140246/how-do-i-resolve-unmet-dependencies-after-adding-a-ppa  
 
Specifically, these steps (but it’s good to try the steps in the suggested order): 

sudo apt-get -u dist-upgrade 

sudo apt-get -o Debug::pkgProblemResolver=yes dist-upgrade 

Then re-run 
>> sudo apt-get update 

and re-try installing ros-kinetic-desktop-full  

 
 
 

On Jetson 
On a high level, these are the things that need to be installed on the Jetson. 

1. Linux GUI 
2. Jetpack 3.2 flash 
3. A re-flash of the Connect Tech Orbitty 
4. ROS Kinetic 

 

Connect terminals to the Jetson (aka “the device”) 
(These instructions are also in the Jeston’s Quick Start Guide under “Force USB Recovery 
Mode”. Refer to it to see all the buttons, ports and whatnot.) 
Connect a display to the Jetson via HDMI port 
Connect a USB keyboard  
Connect the Jetson to your host PC via the USB micro-B plug 
Plug to power  
The Jetson should power on. If it doesn’t, push the ON button. 
Login: nvidia 
Password: nvidia 
 

https://askubuntu.com/questions/140246/how-do-i-resolve-unmet-dependencies-after-adding-a-ppa


 

 

Install Linux 
Run 
$ cat NVIDIA-INSTALLER/README.txt 
And run the instructions that are in that file to install Ubuntu Linux. Note that TX1 comes with 
14.04 LTS and TX2 comes with 16.04 LTS. There may be an additional step for TX1 if the 
course is using 16.04 LTS. 
 

Flash the Jetpack  
NOTE: you will need some 14GB of free space on the host computer for this step. 
Now that we have the GUI, we want to flash the Jetson with Nvidia’s Jetpack 3.2. 
To do this, we need a host computer that is running Linux 14.04 (it seems 16.04 also works - try 
it if that’s what you have). The Jetpack is first downloaded onto the host computer and then 
transferred by micro USB cable over to the Jetson. Follow these instructions: 
https://developer.nvidia.com/embedded/jetpack 
What if you don’t have a Linux 14.04 computer laying around? (most of us don’t). See ​Appendix 
A​ of this doc for an amazing set of instructions by Klein Yuan which details how to use a virtual 
machine with a Mac to do the flash. Steps would probably work similarly for a PC that is running 
Virtual Box. 
 

Re-flash the Orbitty 
After the Jetson has been flashed with Jetpack, we will actually need to re-flash it with the 
Connect Tech Orbitty firmware. Otherwise on the TX2 there can be issues with the USB 3.0 not 
working on the Orbitty carrier board. A great link to instructions is from NVIDIA-Jetson: 
https://github.com/NVIDIA-Jetson/jetson-trashformers/wiki/Jetson™-Flashing-and-Setup-Guide-f
or-a-Connect-Tech-Carrier-Board​. ​Note that each time you flash all of the files will 
essentially be deleted from your Jetson​. So make sure to save any work you may have 
already done and upload it.  

https://developer.nvidia.com/embedded/jetpack
https://github.com/NVIDIA-Jetson/jetson-trashformers/wiki/Jetson%E2%84%A2-Flashing-and-Setup-Guide-for-a-Connect-Tech-Carrier-Board
https://github.com/NVIDIA-Jetson/jetson-trashformers/wiki/Jetson%E2%84%A2-Flashing-and-Setup-Guide-for-a-Connect-Tech-Carrier-Board


 

Install ROS 
Lastly, we will want to install ROS Kinetic. Jetson Hacks on Github has scripts to install ROS 
Kinetic.  

● Here for TX2: ​https://github.com/jetsonhacks/installROSTX2​.  
● And here for TX1: ​https://github.com/jetsonhacks/installROSTX1​.  

Wireless network setup (Penn ESE 680 only) 
We could log into the Jetson using a monitor, keyboard, and mouse, but what about when we’re 
driving the car? Fortunately, the Jetson has Wi-Fi capability and can be accessed remotely via 
an SSH session. 
 
Throughout this tutorial, you will be asked to configure the Jetson’s and your laptop’s network 
settings. Make sure to get these right! Using the wrong IP address may lead to conflicts with 
another classmate, meaning neither of you will be able to connect. 

Connecting the car to the access point 
1. Click the wireless icon at the top right of the screen and click the f110 network to start 

connecting to it. You will be prompted for a Wi-Fi password for the network: enter the 
password the TAs give you. 

a. It’s normal for the wireless icon to appear as if the Jetson is not connected 
immediately to the network since we still need to assign it an IP address. 

2. In the same menu, click “Edit Connections.” In the pop-up value that appears, highlight 
the f110 network and click the Edit button. 

3. Navigate to the IPv4 Settings tab and, under “Addresses,”, click the Add button.  
a. In the “Address” field, type ​192.168.2.xxx ​, where ​xxx ​ is your team’s number 

plus 200. (For example, if I was on team 2, I would type ​192.168.2.202 ​.) 
b. In the “Netmask” field, type ​255.255.255.0 ​. 
c. In the “Gateway” field, type ​192.168.2.1 ​. 

4. In the “DNS servers” field, type the same entry you used for the default gateway: 
192.168.2.1 ​. (The router already has DNS servers configured in its internal settings.) 

5. You should now be connected. Try opening Chromium and connecting to a site like 
Google, or using the ​ping ​ utility from a terminal to test internet connectivity. 

a. If you experience signal strength issues, try moving closer to the router. 
b. If you can’t see the router at all, ensure that your Wi-Fi antennas are securely 

connected to the Jetson. You can also try toggling the adapter on and off via the 
“Enable Wi-Fi” option in the wireless settings menu. 

c. If you are connected to the router but can’t reach the internet, you may need to 
set up the Hokuyo to not allow routing through it. 

 

https://github.com/jetsonhacks/installROSTX2
https://github.com/jetsonhacks/installROSTX1


 

Connecting your computer to the access point 
Important Note​: when connecting your laptop to the router, use an IP address of the form 
192.168.2.xxx ​, where ​xxx ​ is your team’s number multiplied by 4, added to 100, and then 
added to a number between 0 and 3 according to the alphabetical order of your last name in 
your team. For example, if I am on team 2, my name is Jack Harkins, and my teammates are 
Chris Kao, Sheil Sarda, and Houssam Abbas,  I would add 1 since my last name (Harkins) 
comes second, making my final IP address ​192.168.2.209 ​. 

Linux 
If you’re running Linux in a dual-boot configuration or as a standalone OS, the steps to connect 
are the same as those for the Jetson above; just make sure you use the correct IP address for 
your laptop instead of the one for the Jetson.  
 
If you’re running Linux in a VM, connect your ​host​ computer to the router using the instructions 
below. Depending on which VM software you have and the default VM configuration, you may 
also need to set its network adapter configuration to NAT mode. This ensures your VM will 
share the wireless connection with your host OS instead of controlling the adapter itself. 

Windows 
These instructions are for Windows 10, but they should be easily replicable on older Windows 
versions as well. 
 

1. Click the wireless icon at the bottom right of the taskbar, select the f110 network, and 
click the Connect button. Enter the network password when prompted. 

2. Right-click the same wireless icon and click “Open Network & Internet settings.” Click 
“Change connection properties” in the window that pops up. 

3. Scroll down, and under “IP settings,” hit the Edit button. Change “Automatic (DHCP)” to 
manual, click the IPv4 slider, and enter the IP address, gateway, and DNS server as 
described previously. 

a. “Subnet prefix” should be set to ​24 ​, not ​255.255.255.0 ​ as you did with the 
Jetson. 

b. You can leave “Alternate DNS” blank. 
c. Remember to use the correct IP address for your computer; it should be different 

from the one you used on the car.) 
4. If successful, the yellow exclamation mark on the wireless icon should go away. You can 

test connectivity using the ​ping ​ utility included with the Windows command prompt. 

Mac OS  
TODO 



 

 

SSHiing into the car 
The ​ssh ​ utility is useful for gaining terminal access to your car when you don’t have a monitor 
around and when you don’t need to do visualization (e.g. via ​rviz ​). Using this utility will give 
you the ability to edit and run your ROS code remotely and is especially useful when you want 
to rapidly develop and test new algorithms without the hassle a monitor can bring. 
 
Before doing this, make sure both your laptop and car are connected to the f110 network as 
described ​here​. 
 

1. Open a terminal on your laptop and type $ ​ssh <Jetson username>@<your car’s 
IP address ​ to connect to the car. You will be prompted for your Jetson login 
password; type this in as well. 

a. The first time you SSH into the car, you will probably be told that the “authenticity 
of the host can’t be established.” Just type in “yes” and the dialog will not appear 
again. 

2. If successful, you should see a prompt similar to ​ubuntu@tegra-ubuntu:~$ ​, which 
indicates that you’re now connected to the car’s terminal. Try starting ​roscore ​ and 
running some ROS scripts. Don’t forget to source your working directory’s setup file 
beforehand. 

3. Don’t forget that while you’re SSH’ed into the car, you’re running over the wireless 
network. Try not to get too far away from the car so you don’t accidentally get logged 
out, and make sure you ​save your work often​. 

 

Setting up Wireless Hot Spot on Jetson 
As you begin to test on larger tracks, you may find a need to have a direct connection to your 
car, so as to not have to rely on the car being within a certain distance of your router. The 
solution here is to set up wireless hot spot on the Jetson. It is extremely easy.  
 
Go to System Settings on your Jetson. Then Network. 
 



 

 
 
On the bottom center of the pop-up window for the network, click on “Use as Hotspot…” You will 
no longer have internet connection because your wireless antennas will now be used as a hot 
spot rather than to connect to the previous Wi-Fi connection that you were on. 
 
Note that if you plan on using the wireless hotspot feature often, you will want it to boot up on 
startup. To do this, open up Network Connections, under Wi-Fi select Hotspot and Edit.  

 
 

Under General click on “Automatically connect to this network when available”.  
 



 

On your phone, tablet, or laptop you can now connect directly to this Hotspot, and you can use it 
with VNC viewer as well if you have set up a VNC server. The default IP address for Hotspot on 
the Jetson is 10.42.0.1.  

Setting Up VNC Server on Jetson  
(this is not essential, just useful if you feel strongly about having a GUI-type of desktop) 
 
Setting up a VNC server on the Jetson allows you to control the Jetson remotely. Why is this 
beneficial? When the car is running in the real world we won’t be able to connect the Jetson to 
an HDMI display. The traditional solution has been to ssh into the Jetson to see the directories, 
but what if we want to see graphical programs such as Rviz? (in order to see laser scans in live 
time and camera feeds). Or what if we want to be able to see multiple terminal windows open on 
the Jetson? A VNC server does this trick.  
 
Here are sequential instructions to install x11vnc and set it up so it loads every time at boot up, 
taken from ​http://c-nergy.be/blog/?p=10426​. The article linked contains a link to a shell file to 
launch all these instructions. We have just pasted it here in case the original article or its link 
become inaccessible.  

#​ ​################################################################## 
#​ Script Name : vnc-startup.sh 
#​ Description : Perform an automated install of X11Vnc 
#​               Configure it to run at startup of the machine  

#​ Date : Feb 2016 
#​ Written by : Griffon  
#​ Web Site :http://www.c-nergy.be - http://www.c-nergy.be/blog 
#​ Version : 1.0 
# 

#​ Disclaimer : Script provided AS IS. Use it at your own risk.... 
# 

#​ ​################################################################# 
 

#​ Step 1 - Install X11VNC  

#​ ​#################################################################  
sudo apt-get install x11vnc -y 

 

#​ Step 2 - Specify Password to be used ​for​ VNC Connection  
#​ ​#################################################################  
 

sudo x11vnc -storepasswd /etc/x11vnc.pass  

 

 

http://c-nergy.be/blog/?p=10426


 

#​ Step 3 - Create the Service Unit File 
#​ ​#################################################################  
 

cat > /lib/systemd/system/x11vnc.service << EOF 

[Unit] 

Description=Start x11vnc at startup. 

After=multi-user.target 

 

[Service] 

Type=simple 

ExecStart=/usr/bin/x11vnc -auth guess -forever -loop -noxdamage -repeat 

-rfbauth /etc/x11vnc.pass -rfbport 5900 -shared 

 

[Install] 

WantedBy=multi-user.target 

EOF 

 

#​ Step 4 -Configure the Service  
#​ ​################################################################  
 

echo "Configure Services" 

sudo systemctl enable x11vnc.service 

sudo systemctl daemon-reload 

 

sleep  5s 

sudo shutdown -r now  

 
Note that if you want to change the port that the VNC server lives on, then simply change 5900 
to some other number. The article states that if 5900 is used on the Jetson, then the VNC server 
will automatically forward through 5901. And if that is taken, then 5902, and so on and so forth.  
 
To connect to your VNC server, use a VNC viewer. A free one that works pretty well is Real 
VNC’s VNC Viewer (​https://www.realvnc.com/en/connect/download/viewer/​). If you are on a 
mac, you can also use the included Screen Sharing app. Connect by typing into the url [jetson’s 
ip address]:[port number]. So for instance, if the jetson is connected on ip address 192.168.2.9 
with port number 5900, then type in 192.168.2.9:5900.  
 
Lastly, you will want to use an HDMI emulator, like this one 
(​https://www.amazon.com/gp/product/B00JKFTYA8​), in order to trick the Jetson to thinking that 
a display is connected so that it will display at higher resolutions by running the GPU. 
Otherwise, if the Jetson is booted up with nothing connected into the HDMI port, the VNC server 

https://www.realvnc.com/en/connect/download/viewer/
https://www.amazon.com/gp/product/B00JKFTYA8


 

will default to a really low resolution, like 640 x 480. There is probably also an OS way to 
configure this, but it’s a lot easier to buy a $10 piece that solves the issue by hardware.  
 
Note that there are existing softwares to be able to set up VNC servers as well, such as Real 
VNC. However, we found that these could not install on the Jetson TX2 because it uses an 
AARM64 processor. That is why we had to use x11vnc.  
 
 

Hokuyo 10LX ethernet connection setup 
TODO: Add pictures and snippets.  
 
In order to utilize the 10LX you must first configure the eth0 network. From the factory the 10LX 
is assigned the following ip: 192.168.0.10. Note that the lidar is on subnet 0.  
 
First create a new wired connection.  
 
In the ipv4 tab add a route such that the eth0 port on the Jetson is assigned ip address 
192.168.0.15, the subnet mask is 255.255.255.0, and the gateway is 192.168.0.1. Call the 
connection Hokuyo.  Save the connection and close the network configuration GUI.  
 
When you plug in the 10LX make sure that the Hokuyo connection is selected. If everything is 
configured properly you should now be able to ping 192.168.0.1.  
 
In the racecar config folder under ‘lidar_node’ set the following parameter: ‘ip_address: 
192.168.0.10’. In addition in the sensors.launch.xml change the argument for the lidar launch 
from ‘hokuyo_node’ to ‘urg_node’ do the same thing for the node_type parameter.  

Working directory setup 
On your host computer (e.g., your laptop), setup your working directory (the F1/10th car and 
simulator) by following these steps.  
 
Clone the following repository into a folder on your computer.  

$​ ​cd​ ~/sandbox (or whatever folder you want to work ​in​) 
$​ git ​clone​ https://github.com/mlab-upenn/f110-upenn-course.git 

 
Create a workspace folder if you haven’t already, here called f110_ws, and copy the simulator 
folder into it: 



 

$​ mkdir -p f110_ws/src 
$​ cp -r f110-upenn-course f110_ws/src/ 

 
 
You will need to install these with apt-get in order for the car and Gazebo simulator to work. 

$​ sudo apt-get update 
$​ sudo apt-get install ros-kinetic-ros-control ros-kinetic-ros-controllers 
ros-kinetic-gazebo-ros-control ros-kinetic-ackermann-msgs ros-kinetic-joy 

ros-kinetic-driver-base 

 
Make all the Python scripts executable (by default they are set to non-executable when cloned 
from Github). 

$​ ​cd​ f110_ws 
$​ find . -name “*.py” -exec chmod +x {} \; 

 
Move to your workspace folder and compile the code (catkin_make does more than code 
compilation - see online reference). 

$​ catkin_make 

 
Finally, source your working directory into your shell using  

$​ source devel/setup.bash 

 
 
Congratulations! Your working directory is all set up. Now if you examine the contents of your 
workspace, you will see 3 folders (In the ROS world we call them meta-packages since they 
contain packages): algorithms, simulator, and system. Algorithms contains the brains of the car 
which run high level algorithms, such as wall following, pure pursuit, localization. Simulator 
contains racecar-simulator which is based off of MIT Racecar’s repository 
(​https://github.com/mit-racecar/racecar-simulator​) and includes some new worlds such as 
Levine 2nd floor loop. Simulator also contains f1_10_sim which contains some message types 
useful for passing drive parameters data from the algorithm nodes to the VESC nodes that drive 
the car. Lastly, System contains code from MIT Racecar that the car would not be able to work 
without. For instance, System contains ackermann_msgs (for Ackermann steering), racecar 
(which contains parameters for max speed, sensor IP addresses, and teleoperation), serial (for 
USB serial communication with VESC), and vesc (written by MIT for VESC to work with the 
racecar). 

https://github.com/mit-racecar/racecar-simulator


 

udev​ rules setup 
When you connect the VESC and LIDAR to the Jetson, the operating system will assign them 
device names of the form ​/dev/ttyACMx ​, where x is a number that depends on the order in 
which they were plugged in. For example, if you plug in the LIDAR before you plug in the VESC, 
the LIDAR will be assigned the name ​/dev/ttyACM0 ​, and the VESC will be assigned 
/dev/ttyACM1 ​. This is a problem, as the car’s ROS configuration scripts need to know which 
device names the LIDAR and VESC are assigned, and these can vary every time we reboot the 
Jetson, depending on the order in which the devices are initialized. 
 
Fortunately, Linux has a utility named ​udev ​ that allows us to assign each device a “virtual” 
name based on its vendor and product IDs. For example, if we plug a USB device in and its 
vendor ID matches the ID for Hokuyo laser scanners (15d1), ​udev ​ could assign the device the 
name ​/dev/sensors/hokuyo ​ instead of the more generic ​/dev/ttyACMx ​. This allows our 
configuration scripts to refer to things like ​/dev/sensors/hokuyo ​ and 
/dev/sensors/vesc ​, which do not depend on the order in which the devices were initialized. 
We will use udev to assign persistent device names to the LIDAR, VESC, and joypad by 
creating three configuration files (“rules”) in the directory ​/etc/udev/rules.d ​. 
 
First, as root, open ​/etc/udev/rules.d/99-hokuyo.rules ​ in a text editor to create a new 
rules file for the Hokuyo. Copy the following rule exactly as it appears below and save it: 
 

KERNEL=="ttyACM[0-9]*", ACTION=="add", ATTRS{idVendor}=="15d1", 

MODE="0666", GROUP="dialout", SYMLINK+="sensors/hokuyo" 

 
Next, open ​/etc/udev/rules.d/99-vesc.rules ​ and copy in the following rule for the 
VESC: 
 

KERNEL=="ttyACM[0-9]*", ACTION=="add", ATTRS{idVendor}=="0483", 

ATTRS{idProduct}=="5740", MODE="0666", GROUP="dialout", 

SYMLINK+="sensors/vesc" 

 
Then open ​/etc/udev/rules.d/99-joypad-f710.rules ​ and add this rule for the 
joypad: 
 

KERNEL=="js[0-9]*", ACTION=="add", ATTRS{idVendor}=="046d", 

ATTRS{idProduct}=="c219", SYMLINK+="input/joypad-f710" 

 



 

Finally, trigger (activate) the rules by running ​$ sudo ​udevadm control 
--reload-rules && udevadm trigger ​. Reboot your system, and you should find three 
new devices by running  
>> ls /dev 
/dev/sensors/hokuyo ​, ​/dev/sensors/vesc ​, and ​/dev/input/joypad-f710 ​. 
 
If you want to add additional devices and don’t know their vendor or product IDs, you can use 
the command  
$ sudo ​udevadm info --name=<your_device_name> --attribute-walk 
making sure to replace ​<your_device_name> ​ with the name of your device (e.g. ttyACM0 if 
that’s what the OS assigned it. The Unix utility ​dmesg ​ can help you find that). The topmost entry 
will be the entry for your device; lower entries are for the device’s parents. 

Manual control 
Before we can get the car to drive itself, it’s a good idea to test the car to make sure it can 
successfully drive on the ground under human control. Controlling the car manually is also a 
good idea if you’ve recently re-tuned the VESC or swapped out a drivetrain component, such as 
the motor or gears. Doing this step early can spare you a headache debugging your code later 
since you will be able to rule out lower-level hardware issues if your code doesn’t work. 
 
Before you begin: 

● Make sure you have the car running off its LIPO battery and that you have a Logitech 
F710 joypad handy with its receiver (i.e., USB dongle) plugged into the Jetson’s USB 
hub.  

● Make sure you have the VESC connected!  
● Ensure that both your car and laptop are connected to a wireless access point if you 

need the car connected to the Internet while you drive it. Otherwise, follow ​this tutorial​ so 
your laptop and phone can connect directly to the car. 

● Make sure you’ve cloned the course repository and set up your working directory (as 
explained ​here​) 

● This tutorial uses the program ​tmux ​ (available via apt-get) to let you run multiple 
terminals over one SSH connection. You can also use ​VNC​ if you prefer a GUI. 

 
Now, we’re ready to begin. 
 

1. Open a terminal and SSH into the car from your computer. Once you’re in, run ​tmux ​ so 
that you can spawn new terminal sessions over the same SSH connection. 

2. In your tmux session, spawn a new window (using ​Ctrl-A “ ​) and run ​roscore ​ to start 
ROS. 

3. In the other free terminal, navigate to your working directory, run  
$ catkin make 



 

and source the directory using ​$ source devel/setup.bash ​. 
4. Run ​roslaunch racecar teleop.launch ​ to launch the car. Place the car on the 

ground and press the center button on your joystick so you can control the car.  
If this gives you a segmentation error, and it’s caused by compiling the joy package 
(which you can check by running the joy_node on its own), this could be because you 
are using the joy package from the ROS distribution (i.e., installed with apt-get). Remove 
that (sudo apt-get remove joy) and re-compile. This should compile the joy package 
that’s in the repo. 

5. Hold the LB button on the controller to start controlling the car. Use the left joystick to 
move the car forward and backward and the right joystick for steering. 

a. If nothing happens, one reason can be that the joy_node is listening for inputs on 
the js0 port, but the OS has assigned a different port to it, like js1. Edit the yaml 
file which specifies which port to listen to. You can tell what file that is by reading 
the launch file (and following the call tree to other launch files). 

b. Note that the LB button acts as a “dead man’s switch,” as releasing it will stop the 
car. This is for safety in case your car gets out of control. 

c. You can see a mapping of all controls used by the car in ​<your catkin 
workspace>/src/racecar/racecar/config/racecar-v2/joy_teleo

p.yaml ​ For example, in the default configuration, axis 1 (left joystick’s vertical 
axis) is used for throttle, and axis 2 (right joystick’s horizontal axis) is used for 
steering. 

 
Troubleshooting 

● If you’re getting “VESC out of sync errors”, check that the VESC is connected 
● If you get “SerialException” types of messages, ​and you’re using the 30LX 

Hokuyo​, the errors might be due to a port conflict: e.g., suppose that the lidar was 
assigned the (virtual serial bi-directional) port ttyACM0 by the OS. And suppose 
that  the vesc_node is told the VESC is connected to port ttyACM0 (as per 
vesc.yaml). Then when the vesc_node receives joystick commands from 
joy_node (via ROS), it pushes them to ACM0 - so these messages actually go to 
the lidar, and the VESC gets garbage back. So change the vesc.yaml port entry 
to ttyACM1. (This whole discussion remains valid if you switch 0 and 1, i.e. if the 
OS assigned ACM1 to the lidar and your vesc.yaml lists ACM1). Note that 
everytime you power down and up, the OS will assign ports from scratch, which 
might again break your config files. So a better solution is to use udev rules, as 
explained in this ​section​. (See joy_node.cpp for the default port for the joystick. 
You can over-ride that using a parameter in the launch file. See the joy 
documentation for what parameter that is). 

● If you get urg_node related error messages, check the ports (e.g. an ip address 
in sensors.yaml can only be used by 10LX, not 30LX, and vice-versa for the 
/dev/ttyACM​n​). 

● If you get razor_imu errors, delete the IMU entry from the launch file - we’re not 
using an IMU in this build. 



 

Tuning the VESC Parameters  
You may want to fine tune your VESC parameters to match them to your car. Why? You might 
notice that your car with the default parameters drifts slightly to the side, or isn’t going as fast as 
you want it to. In order to tune your VESC parameters, navigate to 
racecar/racecar/config/racecar-v2/vesc.yaml. The vesc.yaml file is a configuration file where you 
can set parameters for erpm gain, steering angle offset, speed_min, speed_max, etc. 
 
If you want to modify the maximum speed, under vesc_driver you can change the speed_min 
and speed_max. These numbers represent the erpm of the car. By default they are set to +/- 
3000 but you can set them higher, up to around 10,000. By default where speed_max is 3000 
even though the joystick is telling the car to go 2 m/s (which corresponds to 
speed_to_erpm_gain * 2 = 9,228) your car will be limited by the 3000 erpm when 2 m/s actually 
corresponds to 9,228 erpm.  
 
If your car’s motor is using a smaller or larger gear (where larger gear means you need lower 
erpm in order to achieve a certain speed), you will want to compensate for this by adjusting the 
speed_to_erpm_gain. For instance, I had to raise my speed_to_erpm_gain from the default 
setting of 4614 to 7442. The reason is that my motor has a smaller gear attached to it (they are 
swappable), so it needs more rotations in order to achieve the same speed. If I hadn’t increased 
the speed_to_erpm_gain, even though I was telling the car to go 2 m/s, in reality it was only 
going 1.2 m/s. And this was problematic because my /vesc/odom topic was publishing incorrect 
measurements - it was overestimating how far the car had traveled.  
 
If you notice that your car is not going straight, then you will want to modify your 
steering_angle_to_servo_offset. By default the value is around 0.53, and you’ll want to increase 
or decrease this slightly until the car is going straight.  
 
Other than these three parameters above, I didn’t change anything else but you are welcome to 
play around with these as you see fit. It’s a great learning experience!  

Testing the LiDAR (USB only) 
 
 
Once you’ve set up the LIDAR, you can test it using ​urg_node ​, ​rviz ​, and ​rostopic ​. 
 

1. Connect the LiDAR to the power board (see section ​Connecting the LIDAR to power 
board​), and plug the USB cable into a free port on your hub. 

2. Start ​roscore ​ in a terminal window. 



 

3. In another (new) terminal window, run ​rosrun urg_node urg_node ​. This tells ROS 
to start reading from the LIDAR and publishing on the ​/scan ​ topic. 

a. If you get an error saying that there is an “error connecting to Hokuyo,” double 
check that the Hokuyo is physically plugged into a USB port. You can use the 
terminal command ​lsusb ​ to check whether Linux successfully detected your 
LiDAR. 

b. If the node started and is publishing correctly, you should be able to use 
rostopic echo /scan ​ to see live LIDAR data. 

4. Open another terminal and run ​rosrun rviz rviz ​ to visually see the data. When 
rviz ​ opens, click the “Add” button at the lower left corner. A dialog will pop up; from 
here, click the “By topic” tab, highlight the “LaserScan” topic, and click OK. 

5. rviz will now show a collection of points (a point cloud) of the LIDAR data in the gray grid 
in the center of the screen. The points appear in colors ranging from green to red, with 
green points being closest to the LIDAR and red points being farthest away.  

a. Try moving a flat object, such as a book, in front of the LIDAR and to its sides. 
You should see a corresponding flat line of points on the ​rviz ​ grid. 

b. Try picking the car up and moving it around, and note how the LIDAR scan data 
changes, 

6. You can also see the LIDAR data in text form by using ​rostopic echo /scan ​. The 
type of message published to it is ​sensor_msgs/Scan ​, which you can also see by 
running ​rostopic info /scan ​. There are many fields in this message type, but for 
our course, the most important one is ​ranges ​, which is a list of distances the sensor 
records in order as it sweeps from its rightmost position to its leftmost position. 

Recording bag data on the car 
ROSbags​ are useful for recording data from the car (e.g. LIDAR, wheel rotation) and playing it 
back later. This feature is useful because it allows you to capture data from when the car is 
running and later study the data or perform analysis on it to help you develop and implement 
better racing algorithms. 
 
One great thing about ROSbags compared to just recording the data into something simpler 
(like a CSV file) is that data is recorded along with the topics it was originally sent on. What this 
means is that when you later ​play​ the bag, the data will be transmitted on the same topics that it 
was originally sent on, ​and any code that was listening to these topics can run, as if the data 
was being generated live​.  
For example, suppose I record LIDAR data being broadcasted on the ​/scan ​ topic. When I later 
play the data back, the ​rostopic list ​ and ​rostopic echo ​ commands will show the 
LIDAR data being transmitted on the ​/scan ​ topic as if the car was actually running! 
 
Here’s a concrete example of how to use ROSbags to acquire motor telemetry data and play it 
back. 

http://wiki.ros.org/rosbag


 

 
1. Make sure both your computer and car are connected to the ​f110 ​ access point. Also, 

make sure your car is connected with a known static IP address. 
2. Open a terminal and SSH into the car. Once you’re in, run ​tmux ​ so that you can spawn 

new terminal sessions over the same SSH connection. 
3. Follow the directions to clone the racecar repositories (TODO fill this in). Clone these 

into your ROS working directory. 
4. In your tmux session, spawn a new window (using ​Ctrl-A “ ​) and run ​roscore ​ to start 

ROS. 
5. In the other free terminal, navigate to your working directory, run ​catkin make ​, and 

source the directory using ​source devel/setup.bash ​. 
6. Run ​roslaunch racecar teleop.launch ​ to launch the car. Place the car on the 

ground or on a stand and press the center button on your joystick so you can control the 
car. 

7. In your tmux session, spawn a new window and examine the list of active ROS topics 
using ​rostopic list ​. Make sure that you can see the ​/vesc/sensors/core ​ topic, 
which contains drive motor parameters. 

8. Here’s where ROSbags come into play. Run ​rosbag record 
/vesc/sensors/core ​ to start recording the data. The data will start recording to a file 
in the current directory with naming format ​YYYY-MM-DD-HH-MM-SS.bag ​. Recording 
will continue until you press Control-C to kill the rosbag process. 

a. If you get an error about low disk space, you can specify the directory to record to 
(e.g. on a USB flash drive or hard drive) after the topic name). For example, on 
my system, I would type ​rosbag record /vesc/sensors/core -o 
/media/ubuntu/Seagate\ Backup\ Plus\ Drive/ ​ to record into the 
root of my external hard drive. 

b. Note that ​rosbag ​ also supports recording multiple topics at the same time. For 
example, I could record both laser scan and motor data using ​rosbag record 
/vesc/sensors/core /scan 

9. Let the recording run for about 30 seconds. Drive the car around during this time using 
the controller and then hit Control-C to stop recording. (​Important​: Quit the running 
teleop.launch ​ as well.)  

10. Play the rosbag file using ​rosbag play <your rosbag file> ​. While the bag is 
playing, examine the topics list, and you will see a list of all topics that were recorded 
into the bag. Note that in addition to the topics you specified, ROS will also record the 
rosout ​, ​rosout_agg ​, and ​clock ​ topics, which can be useful for debugging. 

11. View that recorded motor data by echoing the ​/vesc/sensors/core ​ topic. Pay 
attention to how the motor RPM changed as you drove the car around. When the bag is 
out of data, it will stop publishing. 



 

Simulation 
Why would we want to use a simulator? We want to test the car’s algorithms in a controlled 
environment before we bring it into the real world so that we minimize risk of crashing. If you’ve 
ever had to fix a Traxxas RC car before, you might know that they can be a pain to fix. For 
instance, if a front steering servo plastic piece were to break, we would have to disassemble 
about 20 parts in order to replace it. The simulator will be our best friend for quite a while during 
development. 

 
We will use the ROS ​Gazebo​ simulator software. From a high level, Gazebo loads a world as a 
.DAE file and loads the car. It has a physics engine that can determine when the car crashes 
into a wall.  
 
First, ensure that you have setup your working directory as shown in the instructions ​here​ . 
Next, in the workspace folder, run: 

$​ ​source​ devel/setup.bash 
$​ roslaunch wall_following wall_following.launch  

 
(What is this roslaunch command? See ​here​. Syntax highlighting (section 5 of that page) also 
helps. Note that roslaunch will also start the ROS master node so you don’t need to run roscore 
separately) 
You should see a rectangular-shaped track, this is the Levine Building 2nd floor hallways 
outside of the mLab. The robot spawns at the origin and is doing a simple left wall follow.  
If you have a Logitech F710 joystick on hand and want to try controlling the robot with the 
joystick, you can do that by pressing the LB button on the top left while moving the joypads.  
 

Want a different navigation algorithm? 
As the launch file name suggests, by  default, the car runs Wall Following algorithm in the 
simulator. To change that, you need to edit the launch file. See the online ​references​ to 
understand ROS launch files. 

Want a different track? 
Other track files can be found in  
src/simulator/racecar-simulator/racecar_gazebo/worlds  
and have a .world extension.  

http://gazebosim.org/tutorials
http://wiki.ros.org/roslaunch
http://wiki.ros.org/roslaunch


 

To choose one of these tracks, open 
f110_ws/src/algorithms/wall_following/launch/wall_following.launch. Near the top of the file you 
will see  

<arg name=”world_name” value=”track_levine”> 
 
Change the value to the name of one of the track files, e.g. 

<arg name=”world_name” value=”track_porto”> 
 

Don’t want the GUI? 
If you are using the simulator to test some algorithms but don’t want to see the Gazebo GUI 
(because it’s heavy, or slow, or useless for now), you can disable it by editing the 
wall_following.launch file: in the <include …. racecar.launch> command, add this argument: 
 
<arg name=”gui” value=”false”> 

Moving the car manually in simulation 
Gazebo has a useful feature whereby you can move the car manually by clicking and dragging, 
thus over-riding whatever navigation algorithm it’s running. To translate the car, click on the 
crossing double-headed arrows on the top left of the simulation window (see below). Then grab 
the car with your pointer and move it. To rotate the car in place, click on the circular arrows; then 
grab the car and rotate it. 
 

 

Creating a world  
It can be really beneficial to create your own world. For instance, here in the mLab in Levine 
Building 2nd floor, it has been useful to create a .dae file that models that hallways to test our 
algorithms before taking the robot out into those exact hallways. We were able to obtain from 



 

the university architectural floor plans for the measurements, and also had to measure some 
things ourselves such as the inset of the office doors and the length of side hallways to elevator 
shafts.  
 
A .dae COLLADA file is a file used to represent surfaces. Note the emphasis on surfaces, 
whereas normal .obj files represent actual objects. We use Sketchup software because it is 
about as easy as it gets to create simple 3D models. If you want to try more advanced 3D 
modeling tools, feel free to try out software like 3DS Max, Solid Works, etc. In Google Sketchup, 
we draw rectangles to simulate the walls, and then pull them upwards to some height. Note that 
in Google Sketchup it is best to set the unit to meters since ROS does things in meters, not feet. 
Further note that we purposely did not create a ground in the world because Gazebo would treat 
it as collision physics and weird physics things occur. Instead, in our .world file in ROS, we will 
insert a Gazebo ground. Export your model with just the walls. 
 

 
 
We had to experiment with different export settings for Sketchup. These are the checkboxes 
that worked best in Gazebo. The only 3 checked boxes are “Export Two-Sided Faces”, 
“Triangulate All Faces”, and “Preserve Component Hierarchies.” When we used different 
settings, such as including edges or hidden geometry, weird things would happen where the car 
would see invisible walls. 
 



 

 
 

Once you’ve exported the .dae file, you will need to go into 3 folders in order to add the world. 
1. Navigate to f110_ws/src/simulator/racecar-simulator folders. You should then see folders 

“racecar_description” and “racecar_gazebo.” Inside racecar_gazebo/worlds create a new 
[track_name].world file. You can copy and paste another world to use as a template. 
Update all references to the new track name.  

2. Furthermore, inside of the racecar_description folder, you will need to update files within 
/meshes and /models. Inside racecar_description/models you will want to make a new 
folder with your track name (e.g. “levine_track”) with a model.config file and model.sdf 
file. If you copy and paste a template from an existing track, the steps will be pretty self 
explanatory in terms of updating the track names to your new track name.  

3. Inside racecar_description/meshes you will copy in your .dae file. 
 
Now that you’ve created your .dae file with Sketchup and added it into the code, lastly you will 
want to update your launch file in order to use your new world. Follow instructions from the 
Gazebo Simulator section to update the launch file with your world name. Launch the world and 
you should see your world come up. 
 



 

Algorithms 

Wall Following 
With our Hokuyo lidar sensor attached to the car, one of the simplest algorithms we can run is a 
wall following algorithm. The basic idea is that the car uses the lidar sensor to measure the 
distance to either the left wall, right wall, or both walls, and tries to maintain a certain distance 
from the wall. Inside the wall_following package under /launch you will see a file called 
wall_following.launch.  
 
Run the following commands in terminal in order to see the robot do a simple left wall follow in 
Gazebo simulator. 
 

$​ roscore (​in​ a separate terminal window) 
$​ ​source​ devel/setup.bash 
$​ roslaunch wall_following wall_following.launch  

 
Now you should see the Gazebo simulator load with the car placed at the origin in our Levine 
Building 2nd floor world. The car tries to maintain a certain distance of 0.5 meters from the left 
wall, and will continue following it around left turns in a counter-clockwise fashion.  
 
How is the code organized? From a high level view, data passes in this order: 
pid_error.py -> control.py -> sim_connector.py 
 
The main code for the wall_following is under wall_following/scripts/pid_error.py. In this script 
you will find methods for followLeft, followRight, and followCenter. Pid_error.py subscribes to 
the laser scan /scan topic and calls the callback function each time it gets new lidar data 
(around 40 times per second). It uses PID to calculate the error and adjusts the steering angle 
accordingly in order to try to keep its desired trajectory a certain distance away from the wall. 
Pid_error.py then outputs over the /error topic a message type we custom defined called 
pid_input which contains pid_vel and pid_error. Control.py subscribes to the /error topic and 
limits the car’s turning angle to 30 degrees and slows down the car when it is making a turn, or 
speeds up the car when it is going straight. Control.py publishes to the /drive_parameters topic 
using our custom message type called drive_param which contains velocity and angle. Lastly, 
sim_connector.py subscribes to /drive_parameters and basically repackages the velocity and 
steering angle data into the AckermannDriveStamped message type so that it can be read in by 
the simualtor under the /vesc/ackermann_cmd_mux/input/teleop topic.  
 
If you run the Gazebo simulator long enough, you’ll notice that when the car reaches around ¾ 
of the way through the track, it encounter an opening on the left that leads to a dead-end. 



 

Because the car is programmed to just do a wall follow, it gets stuck here. How might we 
alleviate this problem? With hard-coded turn instructions, as described in the next section.  
 
If you want to try running the wall following in the real world, run these instructions. Depending 
on how wide the hallway is that the car is driving in, you may want to modify the parameters for 
LEFT_DISTANCE and RIGHT_DISTANCE at the top of the pid_error.py file.  
 

$​ roscore (​in​ a separate terminal window) 
$​ ​source​ devel/setup.bash 
$​ roslaunch real_world_wall_following wall_following.launch  

Wall Following with Explicit Instructions 
If we do a simple wall follow (left, right, or center), the robot will always make turns at openings it 
sees. But sometimes we may not want the robot to turn into an opening because it dead ends, 
or we just want it to keep going down the hallway. The idea in this section is to give the robot a 
sequence of turn instructions, which it calls sequentially each time it sees an opening. For 
instance, imagine in the Levine World telling the robot to turn [“left”, “left”, “left”, “center”, “left”]. 
The “center” would allow it to skip the dead end opening and continue straight with a center wall 
follow instead. Explicit instructions also includes velocity instructions.  
 
To run the hard-coded turn instructions code in the simulator, do the following in your terminal. 

$​ roscore (​in​ a separate terminal window) 
$​ ​source​ devel/setup.bash 
$​ roslaunch wall_following_.launch  

 
If you want to run in the real world, run these instructions. 
To run the hard-coded turn instructions code, do the following in your terminal. 

$​ roscore (​in​ a separate terminal window) 
$​ ​source​ devel/setup.bash 
$​ roslaunch real_world_wall_following_explicit_instructions.launch  

 
To change the instructions, navigate to the explicit_instructions/instructions.csv file and change 
the values. You will see something that looks like this: 
 
left, 1.5 
left, 2.0 
left, 1.0 
center, 0.5 
left, 2.0 
center, 1.5 



 

stop, 0.0 
 
The first value is the turn instruction and the second value is the velocity which gets executed 
after making that turn for some duration of time specified in the 
pid_error_explicit_instructions.py file. 
 
The core logic is contained in the file wall_following/scripts/pid_error_explicit_instructions.py. 
There are a lot of comments in the code that describe the algorithm. At a high level, the car is 
constantly scanning for an opening by subscribing to the laser scan data . If the car detects an 
opening, then it takes the next instruction off of the turn instruction array and commits to that 
turn instruction for a specified number of seconds. The reason we commit for some seconds is 
that we don’t want the car to mistakenly think it sees a “new” opening midway through a turn, 
and prematurely call the next turn instruction.  
 
How does the robot detect an opening? The robot scans to the right (and left as well) between 
some window of degrees. It compares lidar scans sequentially (so for instance, 0 degrees vs 
0.25 degrees) and checks if the distance measured to 0 degrees and the distance measured to 
0.25 degrees has a difference of some distance in meters. If there is a dropoff distance, then we 
know there is an opening.  
 
A challenge we ran into is reflections off of metal plates on the doors in Levine Building. The 
robot calculated these as openings because Lidar data showed the points reflecting off the 
metal to be 60 meters away! Our solution was to ignore points that were further than 40 meters 
away because we know that they are metal.  
 
You will also notice that in the real_world_wall_following_explicit_planning.launch file, we call a 
dead_mans_switch.py node. This allows us to use the joystick and the car only moves when the 
top right dead mans switch bumper is held down. This is for safety reasons.  
 
If you notice your car is oscillating a lot on straightaways, try turning the kp value down in 
control.py.  
 
Wall following with hard coded turns is a tedious algorithm because it requires us to manually 
predict where the car will detect openings before we launch the algorithm. Sometimes the car 
detects openings unpredictably, such as when it passes by an office with glass walls or when it 
goes down the ramp from Levine 3rd floor into Towne. This causes the car to prematurely take 
the next instruction set, which then interferes with the rest of the instruction sets. Hence we 
move on to localization and mapping next in search of a better solution to autonomous driving 
that doesn’t require as much human input and is more robust. 

Gap-finding in LiDAR scans [Houssam] 
The topic on which lidar information messages are published is the /scan topic.  



 

If you ​run the simulator​ and run ​$rostopic info /scan ​, you will see the messages are of 
type std_msgs/LaserScan.  

Scan Matching Odometry [Sheil] 
ROS’ ​laser_scan_matcher​ package performs scan matching odometry.  
 
Installing Packages 

$ sudo apt-get install ros-kinetic-amcl 

$ sudo apt-get install ros-kinetic-scan-tools 

 
Getting the example launch file 
The f110 repo contains a launch file that demonstrates running the laser_scan_matcher 
on pre-recorded bag data. Copy it into your workspace’s src/ folder, e.g. 

 

$​ cp -r f110-course-upenn/algorithms/localization src/ 

 
This folder defines a package, ​localization​, which uses ROS’ ​laser_scan_matcher 
package.  
Re-source your setup.bash, and you should be able to run  
$​ rospack find localization  
 
The majority of the parameters in the ​laser_scan_matcher​ node are taken from the 
ROS docs on the ​laser_scan_matcher​ package, available ​here​. 

 
In order to run the ​laser_scan_matcher​ on the pre-recorded bag file, execute the 
following lines in your terminal. 

$ roslaunch localization laser_scan_matcher.launch 

 
If you don’t want to see RViz, change the use_rviz arg in the launch file to “false”.  
The rostopic printing the pose of the car and covariance matrix is called 
/pose_with_covariance_stamped . You can read about it online. 

 

Localization With Hector SLAM 
We use Hector SLAM in order to generate a map given a bag file. First install hector-slam. 
 

http://wiki.ros.org/laser_scan_matcher#Parameters


 

$​ sudo apt-get install ros-kinetic-hector-slam 

 
Run these following commands in order to reproduce it on your machine. 
 

$​ roslaunch localization hector_slam.launch 

 
You will see an Rviz window open up that maps out the Moore Building 2nd floor loop. The 
launch file reads in a bag file which recorded all of the topics. Hector SLAM only needs the 
/scan topic (which contains the laser scans) in order to simultaneously map and localize. Note 
that no odometry data is used, whereas more advanced mapping packages such as Google 
Cartographer have the option to use odometry data and even IMU data. 
 
Once the map is completely generated, in a new terminal window run the following in order to 
save the map as a yaml. The last string after “-f” is the name of the map you’d like to save. 
Since in this case we are using the Moore Building bag file, we appropriately name the map 
“moore”. 
 

$​ rosrun map_server map_saver -f moore 

 
Now you will see in your home directory a levine.yaml file and a moore.pgm file. You will need 
both of these. We have already copied and pasted a version of this under 
localization/localization/maps/moore.yaml, as well as its corresponding moore.pgm file.  
 
Now that you have Hector SLAM working, we can dive a bit more into the details of the 
hector_slam.launch file. At the top of the file you will see that we set the parameter 
/use_sim_time to true because the launch file plays a bag file. In this case, it’s a bag file 
recorded while the car did a single loop around Moore. Whenever we play bag files, it’s 
important to include the --clock argument because it causes ROS to play bag files with 
simulated time synchronized to the bag messages 
(​https://answers.ros.org/question/12577/when-should-i-need-clock-parameter-on-rosbag-play/​.  
 
After the rosbag play instruction in the hector_slam.launch file, you will notice that there is a 
tf2_ros transform node that transforms between base_link to laser. This is very important to 
include or else Hector SLAM will not know where the laser is relative to the center of gravity of 
the car. In this case we use a static transform since the laser does not move relative to the car.  
 
After the tf2_ros transform instruction in the launch file, you will see a reference to the 
hector_mapping mapping_default.launch file with parameters that specify the names of the 
base_frame, odom_frame, map_size, scan_topic, etc. Then there is a hector_geotiff which is 
used to save the map as a Geotiff file. Lastly, we launch rviz with a specific rviz_cfg (Rviz 
configuration) so that we don’t have to select all the topics we want to visualize every time we 

https://answers.ros.org/question/12577/when-should-i-need-clock-parameter-on-rosbag-play/


 

open up Rviz. As a special note of interest, in algorithms below if you see in the launch file that 
there is a --delay of a few seconds added to Rviz, the reason is probably that we need to give 
Rviz time for certain nodes that generally take longer to publish to start publishing, otherwise 
Rviz will get old data. 
 
If your hector_slam.launch isn’t working correctly, a good way to debug is to compare your 
rqt_graph and rqt_tf_tree to the ones we have screenshotted below. 
 

 
Rqt_graph for Hector SLAM generated by running “rosrun rqt_graph rqt_graph” 

 

 
Rqt_tf_tree generated for Hector SLAM by running “rosrun rqt_tf_tree rqt_tf_tree” 



 

Localization With AMCL (Adaptive Monte Carlo Localization) 
Now that we have generated our map, the next step is to be able to localize the car within the 
map. Now you may ask, if we already did SLAM, then why don’t we use Hector SLAM to 
simultaneously localize and map each time this is run? The reason is that Hector SLAM is 
computationally intensive, and we don’t wish to generate a new map each time we run the car. 
Since we assume the world does not change (after all, walls do not break down very often), we 
only want to localize the car within the fixed world. In order to localize the car, we use an 
algorithm called AMCL (Adaptive Monte Carlo Localization).  
 
First install amcl for ROS.  
 

$​ sudo apt-get install ros-kinetic-amcl 

 
Next, run the launch file for amcl we have created. Note that we do not want roscore running 
because amcl will create its own ROS master. If we have two ROS masters there will probably 
be interference problems and hence AMCL will not run correctly.  
 

$​ roslaunch localization amcl.launch 

 
You should see Rviz open up after a delay of 5 seconds (which we purposely set in order to 
make sure everything is loaded, specifically the map server). Then, you will see the map appear 
and the car moving through the map with green particles around it. In Rviz, on the top center 
click on 2D Pose Estimate, then click and drag on where the car starts. It is important to set the 
initial pose because if we don’t then the car will start at the origin and its localization will be 
wrong. In the moore.yaml map, the car starts at the bottom center T-shaped crossroads, facing 
to the left. The car will do clockwise loop back to its original location.  
 



 

 
Setting an initial 2D pose estimate for AMCL. Top bar, fourth button. Then click and drag in the 

map. 
 
In the end, you should see a path that looks something like this image below. It won’t be perfect 
because AMCL (​http://wiki.ros.org/amcl​) requires a /tf (transform) topic. The best way we have 
to generate the /tf is to use the /vesc/odom topic, which literally counts the number of wheel 
spins and degree turns in order to estimate odometry. VESC odometry is not the most accurate 
because errors accumulate over time, but it gives a good general direction that guides AMCL 
with a general location for our car. We then used a message_to_tf node in order to convert the 
/vesc/odom into /tf so that it can be used by AMCL. 
 
Now that you have AMCL working successfully, time for some details on what’s going behind 
the scenes in the amcl.launch file. Like when we ran Hector SLAM, since we are playing this off 
of a bag file we need to set the /use_sim_time parameter to true. We also load a map_server 
node in order to publish the moore.yaml map. Note that we include the same base_link_to_laser 
transform as the one we provided Hector SLAM. After that line in the launch file is loading the 
amcl node, where we kept all the numerical parameters the same and only modified the 
base_frame_id and added initial pose x, y, and a. A is the orientation of the car relative to the 
map frame. You can read more on these in the ​http://wiki.ros.org/amcl​ page for information on 
each parameter. 
 
If your AMCL isn’t working, it’s a good idea to compare your rqt_graph and rqt_tf_tree to the 
ones we have included screenshots of below.  
 

http://wiki.ros.org/amcl
http://wiki.ros.org/amcl


 

 
This is what the rqt_tf_tree looks like. You can verify if yours looks like this too by running 

“rosrun rqt_tf_tree rqt_tf_tree” in another terminal window while AMCL is running. 
 

 



 

This is the rqt graph generated by running in a new terminal window “rosrun rqt_graph 
rqt_graph”. 

 
 

 
 

Now that we can localize the car in a map, what’s next? Well, we can do really cool things! We 
can set waypoints for the car to follow, and those waypoints can have information not just about 
location but also speed at each point on the track. The car can use some type of pure pursuit 
algorithm in order to traverse from waypoint to waypoint. These will all be covered in the next 
sections. 
 

Localization With Particle Filter (faster and more accurate than 
AMCL) 
Why might you want to upgrade from AMCL to MIT particle filter? For one, AMCL only updates 
at around 4 times per second, whereas particle filter updates around 30 times per second. 
Additionally, particle filter uses the GPU whereas AMCL only uses the CPU. This results in the 
ability to use around 100x the number of particles, which results in more accuracy in 
localization. When we tried to use AMCL for localization with pure pursuit, we ran into 
challenges where we weren’t receiving any messages on the estimated pose topic because the 
car had not moved a certain threshold distance. When we set that threshold in AMCL 
parameters to be lower, the localization performance lagged. Hence we have been using the 
particle filter code written by Corey Walsh. The code follows this publication: 
https://arxiv.org/abs/1705.01167​.  

https://arxiv.org/abs/1705.01167


 

 
Follow instructions here to install RangeLibc and other dependencies for particle filter: 
https://github.com/mit-racecar/particle_filter​.  
 
Once you have installed the dependencies, there is no need to install the source code because 
we have already included it inside of the /src/algorithms/particle_filter. To see a demo of the 
particle filter in action, navigate to the terminal and type in the following launch command. 
 

$​ roslaunch localization particle_filter.launch 

 
You can expect to see something like this: 

 
An Rviz window opens up with a map and particles (in red), indicating where the car is in the 
world. The particle_filter.launch file is playing back a rosbag, so you should see the car and 
particles moving around the map in a counter-clockwise fashion. In the particle_filter.launch file 
we manually send a message to /initialpose topic but if you want to set it yourself in Rviz you 
can select the 2D Pose Estimate button on the top (4th button from the left) and click and drag 
in the map.  
 
If you wanted to try it out in the real world with a joystick to see the localization live, you can run 
the particle_filter_live.launch file like this: 

$​ roslaunch localization particle_filter_live.launch 

 
The difference between particle_filter_live.launch and particle_filter.launch is 
particle_filter_live.launch doesn’t play a rosbag, doesn’t use simulated time, and instead 
includes the teleop.launch file. Everything else is the same.  
 

https://github.com/mit-racecar/particle_filter


 

Now that you have the particle_filter.launch working, let’s examine the contents of the file more 
carefully. You will notice many overlaps between particle_filter.launch and amcl.launch and 
hector_slam.launch. For instance, you will recognize the map server, the /use_sim_time 
parameter, the rosbag and the static transform between base_footprint to laser. Note that in 
particle_filter.launch we use the name base_footprint instead of base_link because particle filter 
calls it the base_footprint. Then we load the particle_filter node with a few arguments. We tell 
particle_filter that our scan_topic is called /scan and that our odometry topic is called 
/vesc/odom. We keep the max_particles of 4,000 at the default number. Below are screenshots 
of the rqt_tf_tree and rqt_graph.  
 
What if we want to run particle filter with a slower update rate? (In order to appreciate the speed 
that the GPU offers or to simulate on a slower computer). Inside the particle_filter.launch file, 
you can change the “range_method” from “rmgpu” to “bl”. As documented on the particle filter 
Github repo (​https://github.com/mit-racecar/particle_filter​), “bl” does not use the GPU and has 
much less particles. Our testing shows that “bl” achieves an inferred_pose update rate of 
around 7Hz, whereas “rmgpu” achieves 40Hz.  

 
Rqt_graph for particle filter 

https://github.com/mit-racecar/particle_filter


 

 
 

Rqt_tf_tree for particle filter 

Generating Waypoints 
Now that we have localization down, the next step is to be able to follow a set of waypoints. The 
waypoints are (x, y) coordinates with respect to the map frame. We can expect around 2,000 - 
4,000 waypoints for a loop of length around 66 meters. 
 
Do the following to save waypoints.  

# ​Allow the car to be controlled with joystick 
$​ roslaunch racecar teleop.launch 
 

#​ Record a rosbag with just the scan and vesc/odom topics. Will be saved 
into your Home directory. (In a new terminal window) 

$​ rosbag record scan vesc/odom 
 

# You will need to modify particle_filter.launch with path to rosbag you 

just recorded 

$ roslaunch localization particle_filter.launch 

 

# Records waypoints and saves as waypoints.csv in current working directory 



 

$​ rosrun waypoint_logger waypoint_logger.py 

 
At this point, in your current working directory you will see a csv file called waypoints.csv. Let’s 
go into further detail on what is going behind the scenes. Particle_filter.launch plays the rosbag 
that you recorded (of course, you have to update the particle_filter.launch with the path to your 
bag file you recorded). The particle filter subscribes to the vesc/odom and scan topics, and it 
outputs a stream of messages over the topic pf/viz/inferred_pose. Waypoint_logger.py 
subscribes to pf/viz/inferred_pose and saves the x, y coordinates in each callback to a CSV file.  
 
Now that you have your waypoints.csv file, the next step will be to use this list of waypoints and 
have the car follow them using pure pursuit.  

Following Waypoints with Pure Pursuit 
Now this is the really exciting part.  
 
Before you run the pure_pursuit.launch file, you will need to change the path to the map you 
would like loaded in pure_pursuit.launch. Additionally, you can also set the initial position of the 
car in the map frame. That way, you don’t need to manually draw it out each time in Rviz. By 
default we will set a map and initial pose so that you can see the pure pursuit running.  
 
Additionally, inside of pure_pursuits.py, you will need to update the path to the waypoints file 
that you would like to use. In pure_pursuits.py you can also set a velocity. We recommend 
starting with something slow like 0.5 m/s with a lookahead distance of 1.5 meters. 
 
Now you are ready to run the launch command to start the car moving.  
 
To run in the simulator (recommended to do this first): 

$​ roslaunch pure_pursuit pure_pursuit_sim.launch 

 
Note that the Gazebo simulator works well with pure pursuit algorithm only at slower speeds, 
around 1 m/s on turns and less than 4 m/s on straightaways. The reason is that on turns with 
higher speeds than 1 m/s, Gazebo models the car as sliding out more with a much larger turn 
radius. We’ve tried a dozen ways to try to fix this overestimation of turning drift, but with no 
success. Hence we use Gazebo mainly to test that algorithms work at slower speeds, then take 
the car into real world to slowly ramp up the speed. 
 
Another thing to note is that in the simulator we are using the true (x, y) position of the car by 
listening to the topic /gazebo/model_states and remapping the information to 
/pf/viz/inferred_pose (which would normally be output by particle filter). It is fair to expect that 
particle filter is not perfect in the real world and may have some noise. Hence inside 



 

/algorithms/pure_pursuit/scripts we have a remap_gazebo_pose.py and a 
remap_gazebo_pose_with_noise.py. By default pure_pursuit_sim.launch calls the 
remap_gazebo_pose.py (the one without noise) but if you would like to try the one with noise 
you can replace the line in the launch file to point to remap_gazebo_pose_with_noise.py. The 
parameters for the Gaussian XY variance and rotation variance can be adjusted within that 
python file. 
 
To run in the real world: 

$​ roslaunch pure_pursuit pure_pursuit.launch 

 
All of the core logic for pure_pursuit is contained in the pure_pursuit.py file which can be found 
under algorithms/pure_pursuit/scripts. From a high level, the pseudocode for pure pursuit is like 
this 
(​https://www.ri.cmu.edu/pub_files/pub3/coulter_r_craig_1992_1/coulter_r_craig_1992_1.pdf​)  
 

1. Determine the location of the vehicle (provided by particle filter localization). 
2. Find the path point closest to the vehicle. 
3. Find the goal point. 
4. Transform the goal point to vehicle coordinates. 
5. Calculate the curvature for the car to steer to reach that goal point. 
6. Update the vehicle’s position. 

 
The most challenging part of the algorithm was transforming the goal point to vehicle 
coordinates. There probably is some library out there to do this, but we weren’t able to find it 
trivially and thought it’d be a sound learning exercise to try to implement it ourselves so we 
could explain it to you in this doc. Below is a picture of a whiteboard which shows the math 
behind deriving the goal point coordinates with respect to the car’s frame. We calculate the 
angle gamma, defined as the direction to goal point in car’s frame with respect to the x-axis, 
because using gamma we can derive the goal point coordinates with respect to the car’s frame.  
 
Note that there are also limitations for our pure pursuit algorithm. Here is a list of them: 

1. Car is at constant velocity, on straightaways and turns. Ideally we want faster 
straightaways and slower turns. 

2. Look ahead distance is constant for straightaways and turns. We probably want a farther 
lookahead distance for straightaways so car doesn’t oscillate left and right when it goes 
faster, and a smaller look ahead distance for turns so car doesn’t look too far ahead and 
end up cutting off a corner too tight and hitting the wall.  

3. We want the code to be able to do loop closure, that is have the car know when it is 
completing a loop and continue back to the first index.  

 
Improvements are made that address these limitations in the next section, on pure pursuit with 
speed control.  

https://www.ri.cmu.edu/pub_files/pub3/coulter_r_craig_1992_1/coulter_r_craig_1992_1.pdf


 

 

 



 

Pure Pursuit Speed Control Algorithm 
Our implementation of pure pursuit with speed control (pure_pursuit_with_speed_control.py) 
allows the car to go faster in straight hallways and slow down in turns. The car is following a set 
of waypoints (x, y) coordinates. 
 
To run the pure pursuit with speed control: 

$​ roslaunch pure_pursuit pure_pursuit_with_speed_control.launch 

 
The car examines the points ahead of it within the search window defined by the constants 
WP_TURN_WINDOW_MIN and WP_TURN_WINDOW_MAX and takes the average 
x-coordinate of those points. (You can think of WP_TURN_WINDOW_MIN as being the radius 
of the inner circle of the region to check and WP_TURN_WINDOW_MAX as being the radius of 
the outer circle. See the diagram below.) The amount that the car slows down depends on how 
steep the turn is: if the turn is steeper (that is, the average x-coordinate is far from the car’s 
centerline), the car will slow down more; if the turn is shallow, it will slow down less. For smooth 
speed adjustment, the speed is interpolated between the maximum straightaway speed 
(VELOCITY_STRAIGHT) and the minimum turn speed (VELOCITY_TURN).  
 
Below is a visual explanation of the speed adjustment algorithm. 
 

1. The car is driving in a straightaway and hasn’t entered a turn yet (lots of path points on 
the centerline): proceed at full speed. (4 m/s) 

 
2. The car has begun entering a turn: start slowing down (3 m/s) 



 

 
3. The car is now fully in the turn: slow down to near the minimum speed (2 m/s) 

 
4. The car is starting to exit the turn: speed up a little bit (3 m/s) 



 

 
5. The car has exited the turn: drive at full speed again (4 m/s) 

 

Path Planning with ROS move_base 
At this point we have been able to run pure pursuit relatively fast (up to 6 m/s) following a 
pre-generated set of waypoints. Before, we were generating waypoints by manually driving the 
desired car path beforehand, and then generating the list of (x, y) coordinates by localizing with 



 

particle filter. But what if we want to be able to dynamically generate waypoints, without having 
had driven the car beforehand? What if we want the car to be able to dynamically generate 
paths that can navigate around unseen obstacles? This is where things get even more fun! 
 
We use ROS move_base (​http://wiki.ros.org/move_base​) to incorporate a global planner and a 
local planner. Almost everything in this section is taken from the official ROS tutorial on setting 
up move_base (​http://wiki.ros.org/navigation/Tutorials/RobotSetup​). It’s a very important 
document. We’ve literally read it at least 10 times.  
 
Install move_base by running: 

$​ sudo apt-get install ros-kinetic-move-base 

 
To see move_base running in the simulator, type this in your terminal: 

$​ roslaunch path_planning move_base_sim.launch 

 
When you launch this file, you will see both Gazebo and Rviz open up. You may also see a list 
of yellow warning messages that an “Invalid argument passed to canTransform argument 
source_frame in tf2 frame_ids cannot be empty”. We haven’t yet figured out how to fix this, but 
the car seems to run fine in the simulator even with the warning message.  
 
Move_base_sim.launch calls a Python file called follow_move_base_cmd_vel.py which 
subscribes to the /cmd_vel topic. /cmd_vel is published by move_base’s local planner and is a 
list of Twist messages which basically tells the car what x, y, z velocities and what x, y, z 
angular velocities to move at. The strategy here is to just take these output values in order to 
compute the car velocity and steering angle. The equations are as follows: 
 
Velocity = sqrt(x^2 + y^2) 
Steering angle = atan2(WHEELBASE_LENGTH * theta_dot / velocity) where theta_dot is the z 
angular velocity (aka yaw) 
 
Note that because the default local planner in move_base is designed for differential drive 
robots (robots that can spin in place, like the Roomba vacuum cleaner robots), the paths that 
are generated are not ideal for our car which is an Ackermann steering robot. Hence in the next 
section we will talk about the TEB (Timed Elastic Band) local planner which can be used for 
Ackermann robots. But before we get there, you may also want to test out move_base in the 
real world.  
 
To see move_base running in the real world, run the following: 

$​ roslaunch path_planning pure_pursuit_local_plan.launch  

 

http://wiki.ros.org/move_base
http://wiki.ros.org/navigation/Tutorials/RobotSetup


 

You should see Rviz open with a map of Levine Hall 2nd floor. Note that this launch file is meant 
for running the car live, as in in the real world. If you are running this on your car, in order to get 
the car to move, we have added a dead man’s switch onto the joystick. The car doesn’t move 
unless we hold down the “RB” button on the top right of the joystick. The strategy for the car to 
follow the local plan here is different from the strategy used in the simulator above. Earlier in the 
simulator we subscribed to the /cmd_vel topic which literally gave us the velocity and steering 
angle to follow. Here our strategy is to take the global plan which is a list of Pose data type, and 
use our pure pursuit code from an earlier section. The biggest challenge with pure pursuit for us 
is that with too great of a lookahead distance (in this case greater than 1 meter), the car will run 
into corners on turns because it sees waypoints too far in front. This is a problem because if we 
turn the lookahead distance to something smaller, then the car oscillates a lot going down 
straightaways. Hence this code isn’t ideal for any type of racing, but is merely to demonstrate 
the differences in the two strategies for following the generated paths. The first strategy is 
blindly following the /cmd_vel output by move_base. The second strategy is to take the list of 
waypoints (poses) and use pure pursuit to follow them. 
 
In order to get the car to drive in a loop by path planning, we wrote a script called 
send_goal_poses.py. This file spawns a move_base action server which publishes a series of 3 
nav goals. The trick is that the move_base server - because it knows when the car has reached 
its current nav goal - will then send the next nav goal once the car has reached the previous 
one. Once the car reaches the last nav goal (which is represented by x and y coordinates), then 
the count resets to 0 for the car to fetch the first nav goal. Something important here is that we 
had to tune the xy_goal_tolerance and the yaw_goal_tolerance parameters in the yaml file so 
that the car will register as reaching its goal within 2.0 meters of the goal, and within 180 
degrees yaw of the nav goal. We want a larger xy_goal_tolerance of 2.0 meters so that the car 
can begin planning its next path when it has almost reached the current nav goal. And we set 
the yaw_goal_tolerance to the max value because for sake of simplicity we only send the x, y 
coordinates of nav goals. We don’t send the orientation of nav goals. It’s also important to 
mention that when we set the list of nav goals, to get the coordinates we just dragged initial 
poses in Rviz of where we wanted the car to go, and copied the x, y coordinates displayed in 
the terminal.  
 
We wrote a pure_pursuit_path_planner.py file in order to use pure pursuit to follow this 
generated path at a slow constant speed. Note that you will see a green path generated by the 
global planner. Specifically, the pure_pursuit_path_planner.py python file subscribes to 2 topics: 
 

1. /pf/viz/inferred_pose -> This is the estimated pose published by particle filter (from an 
earlier section). Pure pursuit needs the robot’s estimated pose in order to know which 
waypoint to follow next and where that waypoint is in the car’s frame. 

2. /move_base/TrajectoryPlannerROS/global_plan -> Published by move_base after 
setting a 2D nav goal, this is a list of Pose data type. Normally we see around 150 to 250 
poses per message. We set the global_plan to update 20 times per second, so that it is 
fast enough to react to obstacles that appear.  



 

 

 
This is an image of the rqt_tf_tree. Note that there is no odom frame because we purposely 

removed it for simplicity. 
 
One other note on move_base: launch files that use move_base take in 4 yaml files found in the 
/params folder. These parameters were mainly set according to this tutorial: 
http://wiki.ros.org/navigation/Tutorials/RobotSetup​.  
 
Included below is a screenshot of Rviz. Note the global costmap in blue, red, and purple that 
spans the entire map. And note the local costmap which spans a smaller 10 x 10 meter box (in 
grey). The path (difficult to see in the image) is a green line that starts from the front of the car 
and ends at the boundaries of the local costmap rolling box.  

http://wiki.ros.org/navigation/Tutorials/RobotSetup


 

 
Screenshot of Rviz display with local costmap and global costmap 

Path Planning with TEB (Timed Elastic Band) Local 
Planner 
We’ve just seen move_base working in the simulator and real world. The default local planner 
for move_base was designed for differential drive robots - not Ackermann carlike robots - so you 
may have noticed some of these problems when running move_base code earlier: 

1. When the car got stuck facing a wall or was too close to a corner (and hence stuck in the 
high cost areas of the cost map), the car would just stop and didn’t know how to back up 
or get out of the situation. 

2. Car might oscillate a lot going down straightaways  
3. Turns are sometimes really wide, or sometimes cut corners very tightly. Because 

move_base local planner doesn’t have parameter for car turning radius.  
4. If car overshoots a turn, meaning it’s supposed to turn but then its inertia carries it past 

the turn, the car can’t recover.  
5. Placing obstacles in front of the car (like tennis ball cans), the car sometimes crashes 

into them.  
 



 

To address these problems, we use the TEB (Timed Elastic Band) local planner 
(​http://wiki.ros.org/teb_local_planner​). TEB gets its name from the fact that it takes into account 
time​, meaning that it plans trajectories instead of just paths. What is the difference between a 
trajectory and a path? A trajectory outputs not only x and y coordinates, but also the time when 
the robot needs to reach each point - and implicitly the velocity at each step. Whereas a path is 
just a list of x and y coordinates. 
 
Install TEB: 

$​ sudo apt-get install ros-kinetic-teb-local-planner 

 
TEB is a very thorough, well documented library with LOTS of parameters. Like over 40 
parameters. We configured parameters in 
algorithms/path_planning/params/teb_local_planner_params.yaml. There are params for 
min_turning_radius, wheelbase of the car, max_vel_x, and much more. In our 
follow_teb_local_plan.launch file, under the “move_base” node we add a rosparam that loads 
the teb_local_planner_params.yaml and have removed the default local planner params file. 
The underlying python file, follow_teb_local_plan.py, is very similar to the 
follow_move_base_cmd_vel.py used for the default local planner. The main difference is that 
because Teb literally outputs the velocity and steering angle as is, we don’t need to do 
conversion.  
 
Here are some of the really cool things that TEB enables us to do: 

1. When the car gets stuck in an area of the map with high cost, the car can back up and 
get out of the situation. How cool! 

2. When there are dynamic obstacles such as a person stopping in front of the car, the car 
will go around the person. Note that the default local planner could also do this, but TEB 
can do it better since the car can back up in case its turning radius is not big enough to 
clear the obstacle.  

3. The car can actually race autonomously one on one with another car now. Because the 
car can plan around the other car for passing.  

4. The car can do parallel parking (kind of). But it needs a lot of parameter tuning in terms 
of the min_obstacle_dist, the weight_kinetmatic_forward_drive, etc.  

 
All in all, TEB is just really cool! 

Appendix A: Flashing Jetpack via a VM 
(From ​https://github.com/KleinYuan/tx2-flash​) 
 

http://wiki.ros.org/teb_local_planner
https://github.com/KleinYuan/tx2-flash


 

1. Pre-requisites 

●  A mac desktop connected with Wi-Fi 
●  macOS Sierra 10.12.5 + (Not necessary this version, but this is what I tested) 
●  access to internet and power (You can't do this locally) 
●  NVIDIA TX2 
●  A monitor, HDMI Cable, Ethernet Cable, one Keyboard (USB plugged in), one 

mouse (preferrable), one USB hub (preferrable) 

2. Install Virtual Box and Extensions 

1.1 Install Virtual Box 

Download Virtual Box for Mac from ​here​ and install it first; 

Then download Virtual Box extension ​here​ and install it; 

Extension is needed to enable USB-2/USB-3 connection/communications between any 
physical USB device and the virtual machine. 

1.2 Spin up an Ubuntu VM 

Download Ubuntu 14.04 iso image from ​here​. 

(Ubuntu 16.04 may also work, even I haven't tried it on my own. But here's a ​proof​ that 
Ubuntu 16.04 should also work.) 

Then, create an ubuntu machine with following settings: 

●  Storage is larger than 50GB 
●  Go to Settings --> Network --> Adapter 1, change ​Attached to​ to ​Bridged Adapter​, 

and name to whatever under Wi-Fi 
●  Go to Settings --> Ports --> USB, ensure ​Enable USB Controller​ is under ​USB 3.0 

(xHCI) Controller 

Last, load the image that you just downloaded and spin up an VM. 

http://download.virtualbox.org/virtualbox/5.1.28/VirtualBox-5.1.28-117968-OSX.dmg
http://download.virtualbox.org/virtualbox/5.1.28/Oracle_VM_VirtualBox_Extension_Pack-5.1.28-117968.vbox-extpack
http://releases.ubuntu.com/14.04/ubuntu-14.04.5-desktop-amd64.iso
https://devtalk.nvidia.com/default/topic/1002081/jetson-tx2/jetpack-3-0-install-with-a-vm/post/5210987/#5210987


 

1.3 Download NVIDIA JetPack 

In the VM, open firefox browser and go to NVIDIA's official ​website​ and join them as a 
member so that you can download the JetPack. 

In my case, I downloaded JetPack 3.1 (includes TensorRT2.1, cuDNN 6.0, VisionWorks 
1.6, CUDA 8.0, Multimedia API, L4T, Development tools). 

You are expected to find a file called ​JetPack-L4T-3.1-linux-x64.run​ under ​Downloads 
folder. 

1.4 Install JetPack 

Open a terminal and navigate to Downloads folder, then change .run file as executable: 

cd 

cd ~/Downloads 

chmod +x ./JetPack-L4T-3.1-linux-x64.run 

Then, run the .run file: 

./JetPack-L4T-3.1-linux-x64.run 

 

Then just follow all the steps (basically from 2 to 12 without 9 in ​here​): choose TX2, L4T 

3.1, full-install, then it will take a while to downloads all the dependencies and then a 

window will pop up to ask you to confirm the installation. 

And when download/installation on host machine is finished, you just click all the way to 
pop up a terminal says : 

https://developer.nvidia.com/embedded/jetpack
http://docs.nvidia.com/jetpack-l4t/2_1/content/developertools/mobile/jetpack/jetpack_l4t/2.0/jetpack_l4t_install.htm


 

 

And now, here's the tricky part: 

●  Plug in the USB with a USB hub, then connect a mouse, keyboard to TX2 
●  Connect via HDMI (HDMI-HDMI, no VGA adapters ok?) between TX2 and 

monitor so that you can see what's going on 
●  Follow the descriptions, to power off TX2, connect to host-machine, power on, 

press ..... (just follow what they said), but just hold on Press Enter on host 
machine 

●  Before you Press Enter on host machine's terminal, open settings of your VM, 
and go to Settings --> Ports --> USB, and click ​Add new USB filters with all ..... 

(blahblahblah)​, then add ​NVIDIA Corp. APX 

●  Then, go to VM, click bottom right corner the button with shape an USB (pbbly 
forth one), and select ​NVIDIA Corp. APX​, (it would be great to unplug any other 
USB devices from your Mac) 

●  Last, go back to your VM, do ​Press Enter​ on the terminal 

And, go and grab a coffee, it will take around 30 min to complete the entire process. 

1.5 Validation Flash 

Go to TX2, open terminal: 



 

# Validate NVCC 

nvcc -V 

# Validate cuda 

ls /usr/local | grep cuda 

# Run example 

# You can find this easily online, just google it. 

 

Ta Da! 

Appendix B: Shared folders between Host and VM 
If you don’t have a host computer running Ubuntu, you may do most of the above using a Virtual 
Machine (VM). If so, it is useful to setup a shared folder between the ​host​ (your default OS on 
your laptop) and the ​guest​ (Ubuntu running in the VM). 
The following are for an Ubuntu 16.04 guest on Virtualbox, with the host a Mac OS X El Capitan 
(other Mac OSes should work too).  
We assume you have already installed Virtualbox on your host, and installed Ubuntu 16.04 on it. 
More detailed instructions exist online, this is one way of doing it. 
 
On your host, create the folder you wish to share. We’ll call it sfVM and assume it lives at 
~/sfVM. 
Start VirtualBox.  
Make sure the VM is not on (shut it down if it is). 
Select the Ubuntu VM. 
Click Settings -> Shared Folders -> Click the ‘+’ sign -> browse to sfVM which you created 
above, and check “Auto-mount” and “Make permanent”. 
Start the VM 
Install the Guest Additions: in the VBox menu, click Devices -> Install Guest Additions -> … -> 
Run Software 
Mount the shared folder manually by running: 
 

$​ mkdir ~/guest_sfVM (or whatever you want to call it) 
$​ id 
uid=1000(houssam) gid=1000(houssam) 

$​ sudo mount -t vboxsf -o uid=1000,gid=1000 sfVM ~/guest_sfVM 

 
To check that this was successful, on your host, put some file in the shared folder ~/sfVM. 
Then in your guest, you should see that file appear in ~/guest_sfVM 
 



 

 

Appendix C: Soldering the Power Board 
The power board provides a stable 12V power source for the Jetson, LiDAR, and other 
peripherals. This is necessary since the battery’s voltage will drop as it is used. Please note that 
the power board does ​not​ charge the battery; for this, you will need a Traxxas EZ-Peak charger, 
as listed in the F110 BOM. 
Note: the LiPO protection module and some green connectors are currently unused and are legacy from previous iterations of F1/10 
that used the Teensy microcontroller as motor driver. 

 
Make sure you have the following equipment ready before you begin: 

● Soldering iron or station with adjustable temperature (recommended: ​Weller WES51​ or 
Hakko FX-888D​) 

● Lead-free solder wire 
● Brass tip cleaner 
● Solder sucker 
● Liquid flux pen 
● “Helping hands” with alligator clips 
● Power supply for testing the board 
● Optional: Isopropyl alcohol and toothbrush for cleaning the board 

 
In addition, you’ll need to have a blank power board ready along with the components from the 
power board BOM​. Follow the ordering instructions above to obtain a blank PCB. 
 
Some other notes and tips before we begin: 

● Apply flux to ​every pad​ and ​every pin​ of every component before soldering it! This is 
especially important since this PCB has large ground planes that make it difficult to 
solder if the surfaces aren’t cleaned beforehand. 

● Soldering requires patience and practice. Don’t do it on a whim, or if you’re tired or 
hungry. If you’ve never soldered before, practice on a perfboard or scrap PCB first, or 
get help from a friend. Expect to spend up to 3 hours soldering this board. 

● If you find that the iron isn’t melting solder well, try cleaning it using the brass tip cleaner 
and applying a thin coating of solder to the tip (known as “tinning”). 

● Don’t leave the iron at high heat for more than a few minutes at a time when you’re not 
using it, as it may cause excessive oxidation of the tip that makes it harder to clean and 
tin later. 

● When reflowing (melting) solder you’ve already applied to the board, ensure that ​all​ of 
the solder is melted before you apply more or remove the iron. Not doing this will create 
a “cold joint” that results in a high-resistance bridge between the solder and pad, which 
can result in failing connections later on as the board is used. 

● “Medium heat” as defined in this guide is 650°F. “High heat” is 800°F. 
 

https://www.ebay.com/bhp/weller-wes51
https://www.adafruit.com/product/1204
https://docs.google.com/spreadsheets/d/1VHuQ9C6dR8zr6uKlaB1RB0MDYFsroASENOI1o6BnzPQ/edit#gid=1227879488


 

In general, with a few exceptions, we’ll be soldering components with the flattest profile first (the 
LiPO protection module) and those with the tallest profile last (switches U$3 - U$5). The image 
below shows the order we’ll be moving in. 
 

 
 
Let’s get started! 

LiPO Protection Module (U$2) 
1. Apply flux to each of the 7 pads of the LiPO protection module. Turn the soldering iron to 

medium heat and apply a thin coating of solder to each pad. You’ll know you’ve applied 
enough when the entire pad is covered and the solder makes a very slight bulge upward. 



 

  
 

2. Flux and apply a similar coating of solder to the corresponding 7 pads on the power 
board. Again, make sure the entire pad is covered in a thin layer of solder. 

 
 

3. Place the protection module on the power board (pay careful attention to orientation) and 
heat one of the pads with the iron until ​all ​of the solder on that pad is uniformly melted. 
Once this occurs, apply enough additional solder to the pad until the solder bridges both 
the pad on the PCB and the corresponding pad on the LiPO protection module. 

a. It’s also a good idea to hold the iron in place for several seconds after you’ve 
applied enough solder to ensure the solder on the protection module melts and 
fuses to the solder on the board. This helps to avoid cold joints. 



 

b. Don’t apply so much solder as to make it bulge above the plane of the protection 
module. 

 

NVIDIA Power Supply Jack (U$7) 
4. Apply flux to the 4 pads (both front and back) of the power jack, as well as the power 

jack pins. Insert the power jack into the power board, turn the board over, and use a clip 
on the “helping hands” to hold the board in place on the opposite end of the board. Make 
sure that the power jack is flush with the surface of the board before soldering 

5. Apply enough solder to each of the pads on the power jack until the pad is covered in 
solder and makes a conical tent shape. 

a. One of the pads is closer to a ground plane (the lighter-colored area) than the 
other three and might take a little longer to solder. If the solder doesn’t stick after 
holding the iron for several seconds, try turning the temperature to high heat. You 
can also apply more solder to the pad and suck it up with the solder sucker until it 
sticks to the pad; just make sure that the solder isn’t in a large ball when you’re 
finished. 



 

 

Terminal Blocks (X1 - X9) and Some Small Capacitors (C8, C9) 
6. Since we have a large number of terminal blocks, we’ll break this down into several 

steps, with a few terminal blocks in each step. Start with terminal blocks X2 - X4 by 
applying flux to the pads and pins of the blocks. Place them onto the power board and 
use the helping hand to balance the board so the blocks lie flush with the board. 

a. Make sure the terminal blocks are oriented with the wire holes facing the ​outside 
edge​ of the board, not the center. 

7. Solder the 12V terminals (the ones with a gap between the pin and ground plane) of 
each​ of the blocks first to ensure all of them remain stuck to the PCB if you accidentally 
nudge the board. Then solder the remaining pins (the GND pins) that are closer to the 
ground plane. You might need to use high heat to solder the remaining pins. In both 
cases, you’ll want to apply just enough solder to make a conical tent shape as pictured. 

8. Repeat step 7 for the remaining terminal blocks (X5 - X8) on that side of the board. 



 

 
 

9. You might be tempted to solder blocks X1 and X9 right now. Don’t do this yet! Instead, 
grab two 100nF capacitors, apply flux to the pads and pins for C8 and C9 (near X1 and 
X9), and solder those capacitors on. 

a. It doesn’t matter which way you put these capacitors in since they’re 
non-polarized. 

b. It’s normal (and beneficial) to have some solder flow to the other side of the 
board and attach to the opposite pad since it improves the mechanical strength 
and electrical conductivity of the joint, but it isn’t strictly necessary for a good 
connection. Don’t sweat it if you can’t get it. 



 

 
 

10. Repeat step 7 to solder X1 and X9 to the power board. You shouldn’t need to use the 
helping hand at this point since the terminal blocks on the other side of the board will 
naturally balance the board. 

 
To avoid repeating directions, the following steps will assume you’ve properly fluxed the pins 
and pads of each component before soldering them. This step is ​critical​; make sure you do it 
every time! 

Small Slider Switches (SW1, SW2), Battery Power Jack (U$10), and Remaining Small 
Capacitors (C3, C4, C5, and C6) 

11. Apply solder to the outer (larger) pads of both switches ​first​ before soldering the smaller 
pads. This is to help you ensure the switches have a good mechanical connection to the 
board and are straightened out before you finish soldering them. 

a. It’s fine for these switches if the solder is “pointier” and less cone-shaped than for 
the terminal blocks since the solder has a tendency to flow to the opposite side of 
the board for these switches. 

b. Don’t apply too much solder to these switches since the plastic in them can melt 
if heated for an extended period of time. Stop applying solder once you notice it 
sinking to the opposite side. 

 



 

 
 

12. Solder the battery power jack similarly to how you soldered terminal blocks X2 - X4. 
You’ll want to first start with the pins separated from the ground plane and then solder 
the GND pin connected to the ground plane, using high heat if necessary. 

a. The battery jack should stay in place by friction alone, so you shouldn’t need a 
helping hand or alligator clip. 



 

 
 

13. Grab three 100nF capacitors and one 330nF capacitor. Solder the remaining small 
capacitors according to step 9. For C3 and C4, solder the ground pin last and use higher 
heat if necessary. 

a. Make sure you place the capacitors into the correct pads on the board. It’s easy 
to get confused when you flip the board over, especially for C5 and C6. Also, 
note that C5 is 330nF and not 100nF. 



 

 

Resistors (R1, R2, R3) and Headers (U$1, CON1, CON2, CON3, CON4) 
14. Solder the resistors using the same technique you used for the small capacitors. Cut the 

excess leads off the bottom of the board when you’re finished. 



 

 
 

15. Solder the four 3-pin male headers first. Use a long female header to align the male 
headers while you solder. 



 

 
 

16. Optional​: Solder header JP1 (near the LiPO protection module). We don’t recommend 
this since this header lies over a large ground plane (making it harder to solder) and isn’t 
used for anything except for probing with a multimeter. 

17. Insert the two 14-pin Teensy headers into the board and solder the ​two outermost pins 
of each header before soldering the rest. This makes realigning the headers,  if 
necessary, much easier than if you soldered all of them at once. 



 

 

Battery DC to 12V DC Converter 
This is probably the most ​time-consuming​ part of soldering this board, so take a break if you’re 
tired or hungry. Don’t proceed with this component until you feel ready! 
 

18. Flux both the ​pads ​and the ​pins of the power converter​ before beginning. This is 
especially important for this component since both sides with pins lie over large ground 
planes, and the component itself acts like a large heat sink. 

19. Place a spare header or other small object (non-flammable) in the space underneath the 
power converter, and then place the power converter on top. The purpose of this step is 
two-fold: 

a. It mitigates the effects of the PCB and component acting as a heat sink, allowing 
solder to flow more freely into the pads. 

b. It makes it much easier to remove the component later if you make a mistake, 
which is important because these are the most expensive components on the 
power board. 



 

 
 

20. Clean your iron using the tip cleaner and turn it to high heat. Apply solder to the tip and 
heat one of the four pads and pins that isn’t directly attached to a ground plane. Don’t 
apply additional solder until you’ve heated the pad/pin for at least 15 seconds. 

21. Apply enough additional solder to make a cone shape. Make sure it sticks to the whole 
surface of the pad and not just the pin itself. It helps to keep the iron on one side of the 
pin and apply solder to the gap between the pad and pin on the opposite side so the 
solder doesn’t just stick to the iron. 

22. Repeat steps 20 and 21 for the five remaining pins. Make sure you solder the 
non-grounded pins first (they’re much easier). 

a. If solder isn’t sticking to the ground pads, you can try alternately applying a ball of 
solder and using the solder sucker on the excess until it does stick. You can also 
try refluxing the pins and pads. 



 

 
 

23. Remove the object you placed between the PCB and power converter, and turn the iron 
back down to medium heat. 

12V to 8V Converter (U1), LEDs (D1, D2, and D2), and Large Capacitors (C1, C2, and 
C7) 

24. Place the 12V to 8V converter into its pad, making sure the ridged side faces terminal 
blocks X2 - X8 and the flat side faces the LiPO converter. Bend the two outer pins 
slightly to ensure it stays in the board when you solder it. 



 

 
 

25. Solder the power converter, aiming for a cone shape on each pin as you’ve done before. 
26. Solder the three LEDs onto the board, paying attention to orientation. The LEDs have a 

flat ridge on their negative sides, which should match up with the silkscreened images on 
the PCB. 

27. Place capacitors C1, C2, and C7 into the board, and ​make sure the orientation is 
correct​. These capacitors are polarized, and inserting them backwards could cause 
them to explode! 

a. C1 should be oriented with its ​negative​ end facing towards the large, square 
DC-to-DC converter. 

b. C2 should be oriented with its ​positive​ end facing towards the NVIDIA power 
jack near the edge of the board. 

c. C7 should be oriented with its ​negative​ end facing the terminal blocks X2 - X8, 
28. Solder the non-grounded pin of each capacitor first to hold them in place, then solder the 

grounded pins similarly to how you soldered the large DC-to-DC converter, using higher 
heat if necessary. Above all, make sure solder covers the entire pad and is roughly 
cone-shaped to ensure a good connection. 



 

 

Large Toggle Switches (U$3, U$4, and U$5) 
29. Starting with U$5 (the switch closest to the board’s edge), place the switch into the board 

and solder one of its pins. These pads are larger than most pads, so they will probably 
require more solder to be covered completely. Straighten the switch if necessary and 
then solder the other pad.  

a. If you find it hard to align the switch properly before soldering, use a helping hand 
on the other side of the board to balance it. 

b. Toggling the switches may also help to align them. 
30. Repeat step 28 for U$4 and U$3, in that order. 



 

 

Testing the Board 
31. Connect a regulated DC power supply (​not a battery​) to the board, with the positive 

terminal going to the BATT connection on the white power jack and the negative terminal 
going to the GND_BATT connection. Set the voltage to 11.1V. 

32. Apply power to the board, turn switch U#3 on, and monitor the current being drawn. With 
no load, the current drawn should not exceed roughly 20 mA. 

a. If the current is too high, check the orientation of the LiPO battery protector and 
the capacitors. Make sure there are no stray pieces of solder on the board and 
no solder bridges between adjacent pins. 

b. If no current is drawn, make sure the solder joints for the battery connector and 
power converter completely cover the pads. 



 

 

Cleaning the Board (OPTIONAL) 
To give the board a clean and professional finish, you can clean the flux residue from the board 
using isopropyl alcohol and a toothbrush. Make sure your soldering iron is off first (isopropyl 
alcohol is very flammable), apply some alcohol to the toothbrush, and scrub both sides of the 
board in a circular motion. Allow the alcohol to dry before you use the board. It’s normal for the 
board to feel a little sticky after the alcohol dries; this should go away within a few hours. 
 

 
  



 

Appendix D: Frequently Asked Questions 
This appendix will be updated as we get new questions. Please post questions in the forum at 
f1tenth.org. Answers to common problems will be compiled here. 

General 

Where can I find additional working examples of autonomous control code? 
Please see this repository of past competitors submissions: 
https://github.com/f1tenth/F110CPSWeek2018 

Mechanical 

Do I have a broken drivetrain? How can I fix it? 
Remove the rear housing on the vehicle’s differential. There is only a single screw securing it.  

 
 
Once the housing is removed confirm that the gear on the output shaft is in contact and properly 
meshed with the slipper clutch gear.  

https://github.com/f1tenth/F110CPSWeek2018


 

 
 
If it is not loosen the screw located in the slot of the motor housing so that the output shafts 
position may be adjusted. Once the gears are again properly meshed hold the assembly in 
place and secure the loosened screw. 
 
Before putting the cover back on test the system by rolling the car back and forth. You should 
see the center drive shaft turn etc. It is normal to have some noise on startup (this is the slipper 
clutch engaging).  
 
When you are finished place the cover back on the gearbox assembly and secure it. You need 
to slide one side in between the motor and the edge of the car first.  
 

Differential makes excessive noise… 
Use the ​Lock, Rock, and Roll ​method shown in this video to adjust the pressure on the slipper 
clutch: ​https://youtu.be/C2iw9A7O_xk 
 

I’m not able to steer the car, no response from the steering servo… 
Double check that the servo wires are properly and securely connected. Confirm that you built 
the servo_out firmware for the VESC.  

https://youtu.be/C2iw9A7O_xk


 

System identification failure and VESC tuning… 
First check that you have the correct firmware and hardware version installed. 
 
Second check that you have properly updated the parameters for system identification in the 
FOC tab. See the image in the VESC tuning/setup instruction section.  
 
Third check your battery voltage. Are you below the cutoff level? Are you using recommended 
batteries (e.g. 7 cell NiMH or 3S LiPO). 
 
If you have confirmed these things and system identification still fails consider the following 
suggestion… 
 
Excessive motor vibration and inertia from the drivetrain can negatively affect the system 
identification process. One option is to loosen the screw holding the motor and rotate the motor 
such that the gear on the output shaft is no longer in contact with the main gear connecting the 
motor to the drivetrain. You may consider a small piece of foam or similar to dampen the motor 
vibrations after loosening the screw. 

Removing the stock ESC housing for additional space… 
It initially appears that there is no way to remove this piece. In fact their is a screw underneath 
the black esc module contained in the blue housing. The black esc module is secured by double 
sided tape. Pry the module loose with a flat head screwdriver or similar and remove the screw. It 
should now be possible to remove the blue housing.  

Printing and laser cutting replacement parts… 
The base plate is a simple laser cut piece. The CAD files are provided 
(​https://github.com/mlab-upenn/f1tenthpublic/tree/master/chassis​). For the laser cut pieces you 
will need the dwg files. While your machines may not be exactly the same as the ones at Penn 
every laser cutter I used is similar to the ones described here: 
https://vimeo.com/74134644 
https://vimeo.com/74134989 
 
In addition there are two small 3d printed parts, even a low cost printer like a maker bot will be 
fine. You can find the 3d printed parts here: 
https://github.com/mlab-upenn/f1tenthpublic/tree/master/chassis/3dPrints​. Basic information 
about using a MakerBot can be found here: 
https://vimeo.com/147281524 
 

https://github.com/mlab-upenn/f1tenthpublic/tree/master/chassis
https://vimeo.com/74134644
https://vimeo.com/74134989
https://vimeo.com/74134989
https://github.com/mlab-upenn/f1tenthpublic/tree/master/chassis/3dPrints
https://github.com/mlab-upenn/f1tenthpublic/tree/master/chassis/3dPrints
https://vimeo.com/147281524


 

Wireless Network 

High packet-loss, excessive latency on wireless network… 
One common source of network latency is the physical connection between the antenna and the 
Jetson TX2 module. Please double check that the wires/connectors are properly seated on the 
Jetson TX2 module. In addition we recommend a high-quality router such as ____ in order to 
improve range and network throughput. Note that streaming images from onboard devices such 
as a camera will generally be slow no matter what.  
 

Increasing range of the gamepad 

Adding an antenna 
use the antenna (extra usb cable) provided with the Logitech controller. 

Using other remote controls 
Erwin Coumans of Google Brain provides this library for more typical RF based RC controllers: 
https://github.com/erwincoumans/RC-Receiver-Interface 
Uses the Quanum RC control with Teensy 3.2 as better joystick. A switch on the remote 
switches between human control, OFF and self-driving. (so you don't need to hold the buttons). 
We can also easily program it to keep a a number of constant speeds, nice for data collection 

Software 

VESC serial failures, VESC hardware and software revisions 
If you are using the VESC-x or the VESC-6 the data serialization specification has changed, you 
need to recompile the vesc_driver with alternate headers. Branches can be found here ___ for 
the VESC-x and here __ for the VESC-6 

LIDAR variants 
If you are using the Hokuyo 10LX please confirm that you properly configured the wired network 
connection as described in Section X.X.  

Installing pyTorch  

Preliminary 
Make sure that you system path includes CUDNN 

https://github.com/erwincoumans/RC-Receiver-Interface


 

 

sudo python -c 'import os; print(os.getenv("CUDNN_LIB_DIR"))' 

 

Install Script 
Sample bash script to install pyTorch. You have to build from source because pyTorch does not 
have any arm64 binaries (due to its use of anaconda).  
 
 

#!/usr/bin/env bash 

 

# install jetson-utils prerequisites 

sudo apt-get update 

sudo apt-get install libglew-dev glew-utils libgstreamer1.0-dev 

libgstreamer-plugins-base1.0-dev libglib2.0-dev 

sudo apt-get install python-pip 

sudo apt-get install python-tk python-gi-cairo 

sudo apt-get install libfreetype6-dev 

 

# upgrade pip 

pip --version 

pip install --upgrade pip==9.0.1 

pip --version  

 

 

sudo pip install matplotlib 

sudo pip install pyglet==1.3.1    # lock pyglet for patch 

 

sudo sed -i 's/_have_getprocaddress = True/_have_getprocaddress = 

False/' /usr/local/lib/python2.7/dist-packages/pyglet/gl/lib_glx.py 

 

# setproctitle extension used by A3G 

sudo pip install setproctitle 

 

# install numpy 

sudo pip install numpy 

 

# clone pyTorch repo 

git clone https://github.com/pytorch/pytorch 

cd pytorch 

git tag 



 

git checkout v0.3.0 

git branch 

git submodule update --init 

 

# install prereqs 

sudo pip install -U setuptools 

sudo pip install -r requirements.txt 

 

# Develop Mode: 

python setup.py build_deps 

sudo python setup.py develop 

 

cd torch 

ln -s _C.so lib_C.so 

cd lib 

ln -s libATen.so.1 libATen.so 

cd ../../ 

 

git clone https://github.com/pytorch/vision 

cd vision 

sudo python setup.py install 

 

Testing  
Run these commands… 
 

python # Open a REPL 

import torch 

torch.backends.cudnn.is_acceptable(torch.cuda.FloatTensor(1)) 

# if this returns true you are ready to go! 

 

Additional Resources 
See the following pages: 
https://github.com/dusty-nv/jetson-reinforcement 
https://github.com/andrewadare/jetson-tx2-pytorch 
 

https://github.com/dusty-nv/jetson-reinforcement
https://github.com/andrewadare/jetson-tx2-pytorch


 

Request for feedback… 
Does this work for you? Please list your Jetpack version, CUDA version, and CUDNN version. If 
you encountered any difficulties were you able to solve them? How?  

Installing Tensorflow 
First double check which Jetpack version and which CUDA version you have installed on your 
TX2. You should be able to determine the Jetpack version from the GUI that you used when 
flashing your board. If you are unsure of the CUDA version open a terminal and inspect the 
results of nvcc --version.  
 
Follow the instructions posted here, note that the wheels provided are quite old and may not 
work with your Jetpack/CUDA version... 
https://github.com/jetsonhacks/installTensorFlowJetsonTX 

Updated wheel files available here: 
A quick google search will likely yield your desired variant. Here are some alternate options for 
convenience. Add the wheel files to the appropriate installTensoFlowJetsonTX directory and 
proceed. 
 
Tensorflow Version 1.1 with JetPack 3.3 
https://devtalk.nvidia.com/default/topic/1031300/tensorflow-1-7-wheel-with-jetpack-3-2-/ 
Tensorflow Version 1.6 with JetPack 3.1 or 3.2 
https://github.com/openzeka/Tensorflow-for-Jetson-TX2 
 
 

Using gstreamer and image processing pipeline 
Recording video from sensors like the Zed camera on the Jetson TX2 can be slow. This github 
gist details a solution using gstreamer: 
https://gist.github.com/schen2315/d05027bae32fe160f306b59663ad2dae 

Kernel 

USB doesn’t work… 
If you are using the Jetson TX2 you need to build the board support package for the Orbitty 
carrier. See Section X.X 

https://github.com/jetsonhacks/installTensorFlowJetsonTX
https://devtalk.nvidia.com/default/topic/1031300/tensorflow-1-7-wheel-with-jetpack-3-2-/
https://github.com/openzeka/Tensorflow-for-Jetson-TX2
https://gist.github.com/schen2315/d05027bae32fe160f306b59663ad2dae


 

USB works, but LIDAR and VESC do not work… 
First check that you are opening the correct device. It is highly recommended that you setup 
udev rules as described in Section x.x.  
 
If this fails to work then there is a strong chance that you need to install the ttyACM module. For 
a convenient installer visit ​https://github.com/jetsonhacks/installACMModule 
 

Simulation and Experiments without Hardware 

Virtual Machine Setup… 
Coming soon. 

https://github.com/jetsonhacks/installACMModule

